

Curso Académico: 2024/25

69155 - Computational Imaging

Información del Plan Docente

Año académico: 2024/25

Asignatura: 69155 - Computational Imaging

Centro académico: 110 - Escuela de Ingeniería y Arquitectura

Titulación: 615 - Máster Universitario en Robótica, Gráficos y Visión por Computador / Robotics, Graphics and Computer

Vision Créditos: 6.0 Curso: 1

Periodo de impartición: Segundo semestre

Clase de asignatura: Obligatoria

Materia:

1. Información básica de la asignatura

El objetivo de la asignatura es el estudio y aprendizaje de las principales técnicas y aplicaciones de imagen computacional, las bases teóricas de los métodos más representativos, su aplicación en casos prácticos mediante el diseño e implementación de soluciones algorítmicas, así como los problemas abiertos. El estudiante aprenderá a transmitir al público los conocimientos adquiridos, a trabajar de forma autónoma y en equipo, y la planificación y elaboración de proyectos de investigación.

2. Resultados de aprendizaje

Al completar la asignatura, el estudiante deberá haber adquirido:

- · Conocimiento los elementos hardware que intervienen en sistemas de imagen computacional.
- Comprensión de los principales algoritmos y técnicas utilizados en imagen computacional.
- Conocimiento las principales aplicaciones de imagen computacional.
- La capacidad de diseñar y desarrollar sistemas de imagen computacional para diferentes aplicaciones.
- La capacidad de proponer y evaluar las prestaciones de nuevas técnicas de imagen computacional que aborden problemas no resueltos.
- Adquisición de competencias transversales de trabajo en equipo.

3. Programa de la asignatura

El programa de la asignatura constará de los siguientes temas:

- 1. Modelos de formación de imagen
- 2. Fundamentos matemáticos de la imagen computacional
- 3. Función plenóptica y su muestreo
- 4. Imagen mediante campos de luz
- 5. Fotografía codificada, captura comprimida
- 6. Imagen de alto rango dinámico
- 7. Iluminación computacional
- 8. Principios de imagen transitoria
- 9. Introducción a captura hiperespectral y displays computacionales

La secuenciación de los temas y su contenido pueden variar ligeramente en función de las novedades que se presenten a lo largo del curso tanto por parte de la industria como en el ámbito académico.

4. Actividades académicas

La asignatura consta de 6 créditos ECTS que corresponden con 150 horas estimadas de trabajo del alumno distribuidas del siguiente modo:

- Clases magistrales (30h): Exposición de contenidos mediante presentación o explicación por parte de un profesor.
- Resolución de problemas y casos (10h): Se realizarán problemas y casos prácticos como complemento a los conceptos teóricos estudiados.
- Prácticas de laboratorio (16h): Actividades prácticas desarrolladas mediante equipos informáticos y tutorizados por un profesor
- Estudio y asimilación de la teoría expuesta en las clases magistrales, trabajos de aplicación o investigación prácticos (88h)
- Pruebas de evaluación (6h)

5. Sistema de evaluación

La asignatura se podrá superar en dos modalidades.

En la modalidad de evaluación continua, la asignatura se podrá superar en su totalidad mediante:

- Pruebas escritas y de laboratorio (40% de la nota de la asignatura) entregadas en distintas fechas a lo largo del desarrollo de la asignatura.
- Trabajo práctico en grupo para la elaboración de un proyecto final, involucrando el desarrollo de competencias de trabajo en equipo (45% de la nota de la asignatura).
- Presentación oral del trabajo práctico y debates (15% de la nota de la asignatura).

En esta modalidad, para aprobar es requisito obtener como mínimo 4 puntos sobre 10 en cada una de las actividades arriba descritas, y la suma de las tres partes con su correspondiente ponderación debe ser igual o mayor a 5 puntos sobre 10.

En la modalidad de **evaluación global**, se podrá obtener el 100% de la nota mediante una prueba realizada en la fecha de la convocatoria oficial. Esta prueba incluye:

- Examen escrito con cuestiones relativas a los contenidos teóricos y prácticos de la asignatura.
- Entrega de proyecto final de forma individual o por grupos.
- Presentación y defensa oral del proyecto final.

6. Objetivos de Desarrollo Sostenible

- 8 Trabajo Decente y Crecimiento Económico
- 9 Industria, Innovación e Infraestructura