

Curso Académico: 2024/25

60402 - Análisis de la información geográfica: SIG

Información del Plan Docente

Año académico: 2024/25

Asignatura: 60402 - Análisis de la información geográfica: SIG Centro académico: 103 - Facultad de Filosofía y Letras

Titulación: 352 - Máster Universitario en TIGs para la OT: SIGs y teledetección

Créditos: 12.0 Curso: 1

Periodo de impartición: Anual Clase de asignatura: Obligatoria

Materia:

1. Información básica de la asignatura

Esta asignatura capacita al estudiante para generar, trabajar y modelar diferente información de índole espacial con el objeto de crear conocimiento con una rigurosa base científica para gestionar y solucionar problemas de naturaleza territorial, en aplicación a cuestiones de ordenación territorial y medioambiental.

Estos planteamientos están alineados con los siguientes Objetivos de Desarrollo Sostenible de la Agenda 2030 de Naciones Unidas de modo que los resultados de aprendizaje de la asignatura proporcionan capacitación y competencia para contribuir en: Objetivo 2 - Hambre cero, Objetivo 6 - Agua limpia y saneamiento, Objetivo 11 - Ciudades y comunidades sostenibles, Objetivo 13 - Acción por el clima, Objetivo 14 - Vida submarina y Objetivo 15 - Vida de ecosistemas terrestres.

2. Resultados de aprendizaje

- Conoce la variedad de funciones espaciales que incorporan los SIG, y sus clasificaciones más usuales referidas a la búsqueda de información, reclasificación, superposición, vecindad y distancia y conectividad.
- Argumenta los fundamentos teóricos del análisis espacial mediante SIG y utiliza adecuadamente la terminología propia de la materia. Define las funciones de análisis espacial más usuales y describe su significado y su utilidad.
- Aplica los conocimientos teóricos a la resolución de casos reales mediante la modelización de problemas espaciales de carácter geográfico, seleccionando las funciones SIG y los modelos de datos necesarios.
- Es capaz de implementar los modelos cartográficos de resolución de problemas en alguno de los programas de SIG más conocidos y utilizados.
- Explica los fundamentos teóricos necesarios para la generación de MDE y utiliza los conceptos básicos y la terminología de forma adecuada.
- Elabora MDE a partir de cartografía topográfica digital, seleccionando el método más conveniente a las características de los datos y aplicando los métodos adecuados para la detección y/o corrección de los errores sistemáticos y aleatorios.
- Aplica los procedimientos para generar modelos digitales derivados de los MDE.
- Aplica el análisis de redes a la resolución de tareas complejas mediante la utilización de SIG y utiliza adecuadamente la terminología propia de este tipo de análisis (arcos, nodos, flujo).
- Define el análisis de redes, identifica los tipos de análisis de redes que existen y prepara adecuadamente las bases espaciales para este tipo de tareas.
- Utiliza adecuadamente los recursos disponibles para afianzar el conocimiento adquirido previamente.
- Trabaja adecuadamente en equipo, criticando de manera constructiva las opiniones de los demás, compartiendo información y conocimientos con sus compañeros y buscando soluciones conjuntas.
- Identifica el tipo de fenómenos geográficos cuya gestión puede requerir la utilización de análisis de redes y los discrimina de aquellos para los que no es útil.
- Argumenta la importancia de disponer de superficies continuas de información sobre variables ambientales significativas para su uso en estudios territoriales.
- Explica los métodos más usuales de interpolación espacial -inverso a la distancia, funciones radiales, superficies de tendencia, kriging, cokriging y modelos de regresión y los aplica correctamente, modificando sus parámetros y eligiendo el más adecuado para la representación espacial de los datos mediante la utilización de ArcGIS.
- Es capaz de modelizar variables ambientales a partir de la relación estadística existente con un conjunto de variables independientes y elaborar, con esos modelos, cartografías de detalle a partir de los parámetros obtenidos en la modelización.
- Aplica correctamente los procedimientos que, basados en estadísticos de error, ayudan a seleccionar la cartografía más adecuada a la variable analizada.
- · Argumenta la importancia de la calidad de los datos originales para el resultado cartográfico final.
- Explica los aspectos fundamentales del sistema operativo Linux y las características del entorno de programas con código abierto, es capaz de utilizarlos a nivel de usuario intermedio.

- Explica los aspectos fundamentales de los modelos estadísticos paramétricos y no paramétricos y los aplica al análisis de la información geográfica.
- Explica y aplica una metodología estandarizada de análisis de datos no paramétricos.
- Describe los elementos fundamentales de programación en Python, ArcP y R y es capaz de implementar pequeños programas y módulos integrables en otros programas informáticos de SIG mediante programación en estos lenguajes.

3. Programa de la asignatura

- 3.1.- Análisis espacial básico. Análisis espacial y SIG. Análisis espacial con datos vectoriales y ráster. Búsquedas e interrogaciones. Distancia y proximidad. Álgebra de mapas.
 3.2.- Modelos Digitales de Elevaciones. Concepto de MDE. Métodos para generar MDE. Validación y análisis del error.
- 3.3.- Análisis de redes. Definición y conceptos básicos. Edición y preparación de una red. Redes directas, Redes indirectas
- 3.4.- Interpolaciones. Fundamentos teóricos de la interpolación. Ajuste y validación de los principales métodos de interpolación. 3.5.- Sistemas de Información Geográfica Libres. Réplica del bloque 3.1 mediante software libre (QGIS). 3.6.- Programación para el análisis espacial: Scripting, Phyton y R.

4. Actividades académicas

El desarrollo de la asignatura se llevará a cabo principalmente a través de:

- Sesiones teóricas, a modo de clase magistral, promoviendo la participación de los alumnos (actividades tipo 1).
- Sesiones prácticas dirigidas por el profesor para la presentación de casos prácticos resueltos mediante concurso de equipos informáticos (actividades tipo 3).
- Para el correcto desarrollo de los contenidos el estudiante dedicará horas de estudio individual (tipo 7), además de las correspondientes actividades de evaluación (actividades tipo 8).

5. Sistema de evaluación

1ª Convocatoria

Evaluación continua:

Esta asignatura se evalúa separadamente en función de los bloques temáticos que la componen, participando en la calificación del siguiente modo:

3.1.- 30%: (1) Prueba escrita (50%) que contendrá: a) preguntas sobre los aspectos teóricos; b) resolución, sin ordenador, de un caso práctico; (2) ejercicios prácticos (50%) resueltos con un SIG. 3.2.-8%: Elaboración de un MDE.

3.3.- 8%: Trabajo en equipo: preparación de las bases cartográficas. Práctica con redes de tipo directo/indirecto.

3.4.- 12%: (1) prueba escrita de conceptos (60%); (2) realización y exposición de un trabajo individual, relacionado con problemas y casos prácticos (40%). 3.5.- 12%: Realización de ejercicios.

3.6.- 30%: Realización de ejercicios.

Es necesario obtener una calificación mínima de 4 puntos en cada bloque para promediar. La evaluación continua se realizará dentro del periodo de clases. Criterios: concreción y precisión de las definiciones, empleo correcto de la terminología, concreción y grado de estructuración de los planteamientos, coherencia de la argumentación, originalidad y claridad, selección y adecuación de las funciones de análisis.

Evaluación global:

idéntica a la evaluacion continua. Se realizará en la fecha del período de exámenes fijado por la Facultad.

2ª Convocatoria

Evaluación global: idéntica a la primera convocatoria.

6. Objetivos de Desarrollo Sostenible

- 2 Hambre Cero
- 6 Agua Limpia y Saneamiento 11 Ciudades y Comunidades Sostenibles