

Curso Académico: 2024/25

29824 - Sistemas electrónicos programables

Información del Plan Docente

Año académico: 2024/25

Asignatura: 29824 - Sistemas electrónicos programables Centro académico: 110 - Escuela de Ingeniería y Arquitectura

326 - Escuela Universitaria Politécnica de Teruel

Titulación: 330 - Complementos de formación Máster/Doctorado

440 - Graduado en Ingeniería Electrónica y Automática 444 - Graduado en Ingeniería Electrónica y Automática

Créditos: 10.0

Curso: 440 - Graduado en Ingeniería Electrónica y Automática: 3

330 - Complementos de formación Máster/Doctorado: XX 444 - Graduado en Ingeniería Electrónica y Automática: 3

Periodo de impartición: Anual Clase de asignatura: 440 - Obligatoria 330 - Complementos de Formación 444 - Obligatoria

Materia:

1. Información básica de la asignatura

El objetivo de Sistemas Electrónicos Programables (SEP) es formar en el diseño y programación de sistemas electrónicos con microprocesadores, constituyendo lo que se denomina un sistema empotrado. El estudiante aprenderá a diseñar, construir y poner en marcha circuitos electrónicos basados en microprocesadores y programar los algoritmos de control.

Es una asignatura anual, impartida por dos departamentos, Ingeniería Electrónica y Comunicaciones (SEP I, otoño) e Ingeniería Informática y de Sistemas (SEP II, primavera). Para cursar SEP el estudiante debe saber programar, por lo que se requiere la asignatura de Fundamentos de informática y tener conocimientos suficientes de Fundamentos de electrónica, Electrónica digital y Sistemas automáticos.

2. Resultados de aprendizaje

- Distingue los tipos de circuitos de memoria e interpreta un mapa de memoria.
- Comprende la estructura y funcionamiento básico de un microprocesador.
- Reconoce microcontroladores, DSPs y FPGAs como los dispositivos programables más útiles en electrónica industrial.
- Programa dispositivos electrónicos programables y utiliza sus herramientas de desarrollo.
- Conoce las técnicas de conexión de periféricos básicos, diseña sus circuitos y programa drivers de bajo nivel.
- Diseña y verifica sistemas electrónicos digitales.
- Conoce y sabe aplicar las técnicas de gestión temporal en la programación de sistemas de tiempo real.
- Conoce y sabe aplicar las técnicas de implementación de sistemas de control discreto y muestreado.
- Conoce la problemática de una aplicación concurrente.
- Sabe diseñar y programar una aplicación de tiempo real empotrada.

3. Programa de la asignatura

1er semestre (SEP I)

Sistemas Electrónicos Digitales (Depto. de Ingeniería Electrónica y Comunicaciones)

- Sistemas electrónicos con microprocesador: conceptos básicos.
- Arquitectura y bloques de un microcontrolador comercial.
- Programación en ensamblador y lenguaje C.
- Diseño de circuitos de conexión con dispositivos electrónicos.
- Conexión con dispositivos electrónicos mediante protocolos serie: SPI, I2C, SCI.
- Diseño de sistemas electrónicos completos: alimentación y bajo consumo.

2º semestre (SEP II).

Programación de Sistemas Empotrados (Depto. de Informática e Ingeniería de Sistemas)

- Herramientas de desarrollo de sistemas empotrados basadas en C.
- Gestión del tiempo y periféricos especializados.
- Programación de sistemas de control discreto.
- Programación de sistemas de control muestreado.
- Aplicaciones concurrentes. Ejecutivos cíclicos.
- Núcleos de tiempo real y prioridades.

4. Actividades académicas

- · Clases magistrales participativas (50 horas).
- Clases de problemas y casos (25 horas)
- Prácticas (25 horas). El estudiante preparará la práctica previamente. En la sesión montará, programará y
 comprobará el funcionamiento de circuitos electrónicos basados en microcontrolador.
- Estudio y trabajo personal (140 horas).
- Pruebas de evaluación (10 horas).

Adicionalmente, podría realizarse algún trabajo de asignatura en el marco de alguno de los puntos anteriores, lo cual se indicaría durante el curso y a través de Moodle.

Adicionalmente, en la Escuela Universitaria Politécnica de Teruel se propondrá un proyecto de asignatura que servirá de hilo conductor

5. Sistema de evaluación

Asignatura anual dividida en dos partes, SEP I (otoño) y SEP II (primavera), a aprobar por separado.

Calificación Final SEP = 0.6*SEP_I + 0.4*SEP_II

Evaluación global mediante Prácticas de laboratorio y Examen escrito:

Prácticas de Laboratorio (SEP_I EINA y EUPT, y SEP_II EINA: 40% de la calificación global; SEP_II EUPT: 75%).

- Calificación en la sesión de laboratorio y/o mediante examen. Se valorará la preparación previa y la labor del estudiante en la sesión. Podrían además proponerse algunas tareas adicionales.
- No asistir a una práctica en el horario programado, o no presentar un entregable en la fecha establecida, implica una calificación de 0 en esa actividad.
- Quien no alcance un **mínimo de 4 sobre 10** en el total de la parte práctica de la asignatura tendrá que pasar un **examen individual de laboratorio** en el marco de la convocatoria oficial (oral, escrito o el formato que se indique).

Examen escrito (SEP_I EINA y EUPT, y SEP_II EINA: 60% de la calificación global; SEP_II EUPT: 25%).

- Para poder superar la asignatura se debe obtener un mínimo de 4 sobre 10.
- SEP I y SEP II se evaluarán por separado en las fechas que establezca el centro (normalmente SEP I en enero, SEP II en mayo, y ambas de nuevo en la convocatoria extraordinaria de junio).

Nota. Si no se alcanza el mínimo de 4 sobre 10 en alguna de las dos partes (examen y prácticas), la **calificación final** será la menor entre 4.0 y la fórmula indicada al comienzo.

6. Objetivos de Desarrollo Sostenible

- 8 Trabajo Decente y Crecimiento Económico
- 9 Industria, Innovación e Infraestructura