

Curso Académico: 2024/25

27209 - Química orgánica I

Información del Plan Docente

Año académico: 2024/25

Asignatura: 27209 - Química orgánica I Centro académico: 100 - Facultad de Ciencias Titulación: 452 - Graduado en Química

Créditos: 9.0 Curso: 2

Periodo de impartición: Anual Clase de asignatura: Obligatoria

Materia:

1. Información básica de la asignatura

La materia Química Orgánica se incluye en el módulo fundamental y se reparte entre las asignaturas Química Orgánica I y II. Química Orgánica I está estrechamente relacionada con una parte de la asignatura Laboratorio de Química, también de segundo curso. Los resultados de aprendizaje de Química Orgánica I son básicos para la comprensión de otras asignaturas de los módulos fundamental y avanzado, tales como Bioquímica, Ciencia de los Materiales, Determinación Estructural, así como para la realización de Trabajos Fin de Grado o asignaturas optativas relacionadas con síntesis, reactividad y estructura de compuestos orgánicos. Es recomendable tener un buen conocimiento de Química General y, en concreto, de nomenclatura y estructura de los compuestos orgánicos, formas resonantes, fuerzas intermoleculares y estereoquímica.

2. Resultados de aprendizaje

- Comprender la estructura, propiedades y reactividad de las principales familias de compuestos orgánicos.
- Inferir la relación estructura-propiedades-reactividad de las principales familias de compuestos orgánicos.
- Aplicar los mecanismos de reacción más importantes en Química Orgánica para explicar transformaciones concretas entre compuestos orgánicos.
- Predecir la reactividad de un compuesto en función de su grupo funcional, estructura y sustituyentes.
- Predecir el resultado de una reacción, dados los reactivos y condiciones de reacción.
- Analizar las implicaciones estereoquímicas de algunas reacciones orgánicas.
- Proponer rutas sintéticas para un compuesto dado a partir de otros más sencillos utilizando el análisis retrosintético a nivel básico.
- Resolver problemas sintéticos en los que intervienen secuencias de reacciones.

3. Programa de la asignatura

- 1. ALCANOS Y CICLOALCANOS. Reacciones de halogenación radicalaria.
- 2. HALOALCANOS. Reacciones de sustitución nucleófila y eliminación, reactivos organometálicos, introducción al análisis retrosintético.
- 3. ALQUENOS Y ALQUINOS. Reacciones de adición electrófila, polímeros de adición.
- 4. ALCOHOLES Y ÉTERES. Reacciones de oxidación, reacciones de sustitución nucleófila y eliminación, transposiciones de carbocationes, reacciones de apertura de epóxidos.
- 5. AMINAS Y OTROS DERIVADOS NITROGENADOS. Sales de amonio, sales de diazonio, azocompuestos.
- 6. SISTEMAS p-DESLOCALIZADOS. Derivados alílicos, polienos conjugados, reacción de Diels-Alder como introducción a reacciones pericíclicas.
- 7. BENCENO Y OTROS COMPUESTOS AROMÁTICOS. Reacciones de sustitución electrófila aromática.
- 8. ARENOS, HALOGENUROS DE ARILO Y FENOLES. Influencia del anillo de benceno en la reactividad de los sustituyentes, reacciones de sustitución nucleófila aromática.
- 9. ALDEHÍDOS Y CETONAS. Reacciones de adición nucleófila.
- 10. ÁCIDOS CARBOXÍLICOS Y SUS DERIVADOS. Reacciones de sustitución nucleófila en el acilo.

4. Actividades académicas

Clases de teoría (6 ECTS). Esta actividad comprende 60 h de clase magistral, que incluyen transparencias en formato power point y explicaciones en pizarra. Esta actividad podrá ser completada en sesiones de tutorías tanto individuales como en pequeños grupos.

Clases prácticas de problemas (3 ECTS). Esta actividad comprende 30 h de clase dedicadas a la resolución de problemas, generalmente en la pizarra. El alumnado deberá conocer los ejercicios con tiempo suficiente. Las cuestiones planteadas se pondrán en común para su discusión en el aula y se podrán completar en clases de tutoría tanto individuales como en

pequeños grupos.

5. Sistema de evaluación

El estudiante deberá demostrar que ha alcanzado los resultados de aprendizaje previstos mediante las siguientes actividades de evaluación

- Evaluación progresiva del aprendizaje mediante resolución de problemas o cuestiones teórico-prácticas (NOTA C). Para que esta nota se tenga en cuenta será necesario presentarse al 75% de las actividades planteadas durante el
- Examen parcial a mediados de curso consistente en la resolución de problemas o ejercicios teórico-prácticos (NOTA P) de la materia del primer cuatrimestre. Este examen no elimina materia.
- Examen final de toda la materia de la asignatura consistente en la resolución de problemas o ejercicios teóricoprácticos (NOTA F).

Se permitirá el uso de modelos moleculares.

La calificación final (CF) de la asignatura será la mejor calificación obtenida de aplicar la fórmula 1 o la fórmula 2.

Formula 1* CF = 0.2 C + 0.3 P + 0.5 F

*Es necesario sacar una calificación mínima de 4 en el examen final para aplicar esta fórmula.

Fórmula 2 CF = F

6. Objetivos de Desarrollo Sostenible

- 4 Educación de Calidad9 Industria, Innovación e Infraestructura
- 12 Producción y Consumo Responsables