

Curso Académico: 2022/23

29701 - Física I

Información del Plan Docente

Año académico: 2022/23 Asignatura: 29701 - Física I

Centro académico: 110 - Escuela de Ingeniería y Arquitectura

Titulación: 434 - Graduado en Ingeniería Mecánica

Créditos: 6.0 Curso: 1

Periodo de impartición: Primer semestre o Segundo semestre

Clase de asignatura: Formación básica

Materia:

1. Información Básica

1.1. Objetivos de la asignatura

La asignatura Física I se centra en los fundamentos de mecánica y sus aspectos más aplicados tales como las oscilaciones mecánicas, la elasticidad y la mecánica de fluidos. Así mismo, proporciona los conceptos y principios básicos de la termodinámica, fundamentalmente orientados al estudio de la transmisión del calor y al análisis energético de máquinas y dispositivos. Por tratarse de una asignatura de formación básica, estos conocimientos se enfocan como punto de partida para otras asignaturas de la Rama Industrial y específicas de la titulación, así como para la Física II.

De forma general se estudiarán los fenómenos fundamentales, leyes y principios que conforman la asignatura, haciendo hincapié en la generalidad y validez de los mismos independientemente del contexto específico en el que se estudien. También se insistirá en la utilización de unas herramientas matemáticas de validez también general independientemente de su contexto físico concreto. En la parte experimental de la asignatura se insistirá en el tratamiento e interpretación de datos de laboratorio ya que constituyen una base metodológica esencial para el alumno. Por otra parte, y dado el carácter específico de la titulación, se intentará mostrar la aplicación de los conceptos físicos a problemas del ámbito del Grado. Para ello se hará especial énfasis en que las prácticas y problemas conecten directamente con la titulación.

En el planteamiento de la asignatura, las actividades que se realizan, además de perseguir la asimilación de los conocimientos, llevan implícito como objetivo el desarrollo de las capacidades de razonamiento, análisis, síntesis y de resolución de problemas.

Los contenidos evaluables en esta asignatura, por si solos, todavía no dan capacidades directas al estudiante para aportar a la consecución de la Agenda 2030; sin embargo son imprescindibles para fundamentar los conocimientos posteriores del resto de la titulación que sí se relacionan más directamente con los ODS y por tanto con la Agenda 2030.

1.2. Contexto y sentido de la asignatura en la titulación

La asignatura de Física I forma parte del bloque de formación básica del Plan de Estudios del Grado y representa la primera parte de la materia Física. Se trata de una asignatura de 6 ECTS que se imparte en el primer cuatrimestre del primer curso.

La asignatura presenta las bases conceptuales de la mecánica y de la termodinámica y constituye la formación física de soporte de asignaturas de la Rama Industrial tales como: Mecánica, Mecánica de Fluidos, Ingeniería Térmica, Resistencia de Materiales, Ingeniería de Materiales. Así mismo, los contenidos serán necesarios en diversas asignaturas obligatorias y optativas de la tecnología específica del Grado.

El programa es amplio debido a su carácter generalista. La asignatura proporcionará al alumno bases sólidas y rigor científico-técnico. No obstante, se intentará asociar los contenidos a aplicaciones prácticas del ámbito del Grado.

1.3. Recomendaciones para cursar la asignatura

Son recomendables conocimientos previos de Física y Matemáticas de Bachillerato.

Se recomienda al alumno la asistencia activa a las clases de teoría y problemas, así como un estudio continuado de los contenidos de la asignatura, la preparación de los problemas prácticos que puedan ser resueltos en sesiones posteriores, el estudio de los guiones y la elaboración continua de los resultados de las prácticas y experiencias de laboratorio.

El trabajo continuado es fundamental para superar con el máximo aprovechamiento esta asignatura, por ello, cuando surjan dudas, es importante resolverlas cuanto antes para garantizar el progreso correcto en esta materia. Para ayudarle a resolver sus dudas, el estudiante cuenta con la asesoría del profesor, tanto durante las clases como, especialmente, en las horas de tutoría especialmente destinadas a ello.

2. Competencias y resultados de aprendizaje

2.1. Competencias

Competencias básicas:

- (CB1) Que los estudiantes hayan demostrado poseer y comprender conocimientos en un área de estudio que parte de la base de la educación secundaria general, y se suele encontrar a un nivel que, si bien se apoya en libros de texto avanzados, incluye también algunos aspectos que implican conocimientos procedentes de la vanguardia de su campo de estudio.
- (CB2) Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma profesional y
 posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la
 resolución de problemas dentro de su área de estudio.

Competencias generales:

- C04: Capacidad para resolver problemas y tomar decisiones con iniciativa, creatividad y razonamiento crítico.
- C10: Capacidad para aprender de forma continuada y desarrollar estrategias de aprendizaje autónomo

Competencias específicas:

 C13: Comprensión y dominio de los conceptos básicos sobre las leyes generales de la mecánica, termodinámica, campos y ondas y electromagnetismo y su aplicación para la resolución de problemas propios de la ingeniería.

2.2. Resultados de aprendizaje

- 1. Conoce los conceptos y leyes fundamentales de la mecánica y de la termodinámica y su aplicación a problemas básicos en Ingeniería.
- 2. Analiza problemas que integran distintos aspectos de la Física, reconociendo los variados fundamentos físicos que subyacen en una aplicación técnica, dispositivo o sistema real.
- 3. Conoce las unidades, órdenes de magnitud de las magnitudes físicas definidas y resuelve problemas básicos de ingeniería, expresando el resultado numérico en las unidades físicas adecuadas.
- 4. Utiliza correctamente métodos básicos de medida experimental o simulación y trata, presenta e interpreta los datos obtenidos, relacionándolos con las magnitudes y leyes físicas adecuadas.
- 5. Utiliza bibliografía, por cualquiera de los medios disponibles en la actualidad y usa un lenguaje claro y preciso en sus explicaciones sobre cuestiones de física.
- 6. Aplica correctamente las ecuaciones fundamentales de la mecánica a diversos campos de la física y de la ingeniería: dinámica del sólido rígido, oscilaciones, elasticidad, fluidos.
- 7. Comprende el significado, utilidad y las relaciones entre magnitudes, módulos y coeficientes elásticos fundamentales empleados en sólidos y fluidos.
- 8. Realiza balances de masa y energía correctamente en movimientos de fluidos en presencia de dispositivos básicos
- 9. Utiliza correctamente los conceptos de temperatura y calor. Los aplica a problemas calorimétricos, de dilatación y de transmisión de calor.
- 10. Aplica el primer y segundo principio de termodinámica a procesos, ciclos básicos y máquinas térmicas.

2.3. Importancia de los resultados de aprendizaje

Los resultados de aprendizaje de la asignatura son fundamentales porque proporcionan al alumno un conocimiento básico y las herramientas metodológicas necesarias para resolver problemas simplificados relacionados con la mecánica y la termodinámica y que se presentan en el ámbito del Grado en Ingeniería Mecánica. A su vez son el punto de partida que se utilizará en diversas asignaturas del Grado.

3. Evaluación

3.1. Tipo de pruebas y su valor sobre la nota final y criterios de evaluación para cada prueba

La asignatura se evaluará en la modalidad de evaluación global. No obstante se programarán pruebas a lo largo del semestre al objeto de facilitar la superación gradual de la asignatura.

Evaluación continua

A mitad de semestre se realizará una prueba escrita de los temas 1 a 6 (37,5% de la calificación final).
 Aquellas personas que obtengan una calificación igual o superior a 4,5, podrán continuar, si lo desean, con la evaluación continua.

- Finalizado el semestre, se realizará una prueba escrita de los temas 7 a 10 (37,5% de la calificación final).
 Se puede realizar por parte de aquellos alumnos que obtuvieran una calificación de 4,5 o superior en el examen realizado a mitad de semestre. Esta prueba se realizará únicamente en la primera convocatoria oficial.
- Examen sobre las prácticas de laboratorio, (20% de la calificación final). La calificación de las prácticas de laboratorio se determinará mediante un examen escrito para los estudiantes que hayan realizado las sesiones prácticas.
- A lo largo del semestre se realizarán trabajos en grupo o individuales, 5% de la calificación final

Evaluación global

- Examen de los temas 1 a 10 (80% de la calificación final).
- Examen sobre las prácticas de laboratorio (20% de la calificación final). La calificación de las prácticas de laboratorio se determinará mediante un examen escrito para los estudiantes que hayan asistido a las sesiones prácticas. Adicionalmente, los estudiantes que no hayan realizado regularmente las sesiones de prácticas serán evaluados mediante un examen práctico en el laboratorio.

Características de la evaluación:

Las pruebas escritas de teoría y problemas constarán de una parte de cuestiones (30% de la calificación del examen), y, otra parte de problemas (70% de la calificación del examen). Esta prueba está orientada a evaluar tanto la comprensión de los conceptos teóricos fundamentales, como su aplicación en la resolución numérica de ejercicios prácticos. La parte teórica de la prueba permitirá verificar los resultados de aprendizaje 1 y 5 a 10, en sus aspectos más conceptuales, mientras que la parte de problemas proporcionará información sobre la asimilación de los resultados 2, 3 y la aplicación práctica de los resultados 6 a 10.

Además de la prueba escrita para evaluar la comprensión de las prácticas de laboratorio, se valorará de forma continua la actividad en el laboratorio mediante la presentación al final de la sesión de los resultados preliminares obtenidos en cada sesión práctica. La prueba de evaluación de las prácticas de laboratorio permitirá evaluar los resultados de aprendizaje 3, 4 y 5.

Los trabajos tutelados permitirán evaluar los resultados 1, 2, 3 y 5.

4. Metodología, actividades de aprendizaje, programa y recursos

4.1. Presentación metodológica general

Metodologías docentes

- 1. Clases magistrales, en las que el profesor explicará los principios básicos de la asignatura y resolverá algunos problemas seleccionados de aplicación de la asignatura a la titulación. Se busca la participación de los alumnos en esta actividad. Paralelamente el alumno debe realizar trabajo personal de estudio para un mejor aprovechamiento de las clases.
- 2. Prácticas de laboratorio que se distribuyen a lo largo del cuatrimestre y cuya valoración formará parte de la calificación final de la asignatura.
- 3. Trabajos tutelados de los alumnos en los que se propone la resolución en grupos de problemas o cuestiones prácticas que integran distintos aspectos de la asignatura.
- 4. El trabajo autónomo, estudiando la materia y aplicándola a la resolución de ejercicios. Esta actividad es fundamental en el proceso de aprendizaje del alumno y para la superación de las actividades de evaluación.

4.2. Actividades de aprendizaje

La asistencia a **todas** las actividades de aprendizaje es de especial relevancia para adquirir las competencias de la asignatura.

1. Clases magistrales (50 horas)

En esta actividad se exponen contenidos fundamentales de la materia y se hacen ejercicios prácticos que facilitan su comprensión y asimilación. En las sesiones prácticas se resuelven de manera participativa problemas de aplicación. Se anima a los alumnos a que previamente a la clase resuelvan por su cuenta los problemas que les habrá indicado el profesor.

2. Prácticas de laboratorio (10 horas)

Para la realización de las prácticas de laboratorio los alumnos disponen de guiones de prácticas accesibles en el ADD, que contienen una introducción teórica y las pautas para el desarrollo de la actividad. Es necesario que el estudiante realice las tareas con el guión de la práctica previamente comprendido. Posteriormente a la sesión de laboratorio, el estudiante elaborará un guión de resultados.

3. Trabajos tutelados (8 horas)

El profesor propondrá los temas de trabajo que integren distintas partes de la asignatura y que se realizarán de forma autónoma contando con la tutorización del profesor.

4. Estudio y trabajo personal (77 horas)

Es muy importante que el alumno desarrolle de manera constante, y repartido a lo largo de todo el cuatrimestre, trabajo personal de estudio, de resolución de problemas y de elaboración de resultados de prácticas de laboratorio.

5. Pruebas de evaluación (5 horas)

Además de la función calificadora, la evaluación también es una herramienta de aprendizaje con la que el alumno testea el grado de comprensión y asimilación que ha alcanzado de la materia.

Tutorías

El estudiante que lo desee planteará al profesor dudas de la asignatura. Para ello el estudiante dispone de un horario de atención de tutorías.

4.3. Programa

MECÁNICA.

Fundamentos de Mecánica.

Cinemática y dinámica de la partícula.

- 1. Cinemática.
- 2. Dinámica de la partícula.
- 3. Dinámica del sólido rígido.
- 4. Estática.

Mecánica Aplicada.

- 5. Oscilaciones mecánicas.
- 6. Elasticidad.
- 7. Mecánica de Fluidos.

TERMODINÁMICA

- 8. Calor y Temperatura. Transmisión del calor.
- 9. Procesos termodinámicos. Primer principio.
- 10. Máquinas térmicas. Segundo principio.

4.4. Planificación de las actividades de aprendizaje y calendario de fechas clave

Las clases magistrales y de problemas y las sesiones de prácticas en el laboratorio se imparten según horario establecido por el centro y es publicado con anterioridad a la fecha de comienzo del curso.

Cada profesor informará de su horario de atención de tutoría.

Las fechas de inicio y finalización de la asignatura y las horas concretas de impartición se podrán encontrar en la página web del Centro: http://eina.unizar.es/

Desde el inicio del semestre los alumnos dispondrán del calendario detallado de actividades (prácticas y experiencias de laboratorio,?). No obstante, y de manera orientativa, el calendario será el siguiente:

- Semanas iniciales del semestre: Inicio de prácticas, experiencias de laboratorio y clases en grupos pequeños.
- Mitad de semestre: prueba intermedia.
- Fecha fijada por el centro en bandas de examen: Examen final.

4.5. Bibliografía y recursos recomendados

La bibliografía actualizada se encuentra en la página web de la Biblioteca de la Univ. de Zaragoza:

http://psfunizar10.unizar.es/br13/egAsignaturas.php?codigo=29701&Identificador=12423