Academic Year/course: 2021/22

30041 - Structural Analysis of Industrial Facilities

Syllabus Information

Academic Year: 2021/22 Subject: 30041 - Análisis estructural de instalaciones industriales Faculty / School: 110 - Escuela de Ingeniería y Arquitectura Degree: 436 - Bachelor's Degree in Industrial Engineering Technology ECTS: 6.0 Year: 4 Semester: First semester Subject Type: Optional Module:

1. General information

2. Learning goals

3. Assessment (1st and 2nd call)

4. Methodology, learning tasks, syllabus and resources

4.1. Methodological overview

The methodology followed in this course is oriented towards achievement of the learning objectives. It is based on participation and the active role of the student favors the development of communication and decision-making skills. A wide range of teaching and learning tasks are implemented, such as lectures, guided assignments, laboratory sessions, autonomous work, and tutorials.

Students are expected to participate actively in the class throughout the semester.

Classroom materials will be available via Moodle. These include a repository of the lecture notes used in class, the course syllabus, as well as other course-specific learning materials.

Further information regarding the course will be provided on the first day of class.

4.2. Learning tasks

The course includes 6 ECTS organized according to:

- Lectures (1.2 ECTS): 30 hours.
- Laboratory sessions (1.2 ECTS): 30 hours.
- Guided assignments (0.8 ECTS): 20 hours.
- Autonomous work (2.6 ECTS): 65 hours.
- Tutorials (0.2 ECTS): 5 hours.

Lectures: the professor will explain the theoretical contents of the course and solve illustrative applied problems. These problems and exercises can be found in the problem set provided at the beginning of the semester. Lectures run for 3 weekly hours. Although it is not a mandatory activity, regular attendance is highly recommended.

Laboratory sessions: sessions will take place every 2 weeks (6 sessions in total) and last 2.5 hours each. Students will work together in groups actively doing tasks such as practical demonstrations, measurements, calculations, and the use of graphical and analytical methods.

Guided assignments: students will complete assignments, problems and exercises related to concepts seen in laboratory sessions and lectures. They will be submitted at the beginning of every laboratory sessions to be discussed and analyzed. If

assignments are submitted later, students will not be able to take the assessment test.

Autonomous work: students are expected to spend about 65 hours to study theory, solve problems, prepare lab sessions, and take exams.

Tutorials: the professor's office hours will be posted on Moodle and the degree website to assist students with questions and doubts. It is beneficial for the student to come with clear and specific questions.

4.3. Syllabus

Part I: Three dimensional surface structures

- 1. Kirchhoff plate theory
- 2. Kirchhoff-Love shell theory
- 3. Liquid storage tanks
- 4. Grain storage silos
- 5. Gas storage tanks

Part II: Structural dynamics

- 1. Structural dynamics fundamentals. Calculation equations and methods
- 2. Single degree of freedom systems. Free and forced vibrations
- 3. N degree of freedom systems
- 4. Calculation of natural frequencies and mode shapes
- 5. Methods for solving the equations of motion
- 6. Seismic analysis

Part III: Retaining walls and foundations

- 1. Classification and characterization of soil behaviour
- 2. Strains and stresses calculation
- 3. Retaining walls calculation
- 4. Foundations calculation

4.4. Course planning and calendar

For further details concerning the timetable, classroom and further information regarding this course please refer to the "Escuela de Ingeniería y Arquitectura " website (https://eina.unizar.es/)

4.5. Bibliography and recommended resources

Link:

http://biblos.unizar.es/br/br_citas.php?codigo=30041&year=2019