

Curso Académico: 2021/22

27031 - Sistemas dinámicos

Información del Plan Docente

Año académico: 2021/22

Asignatura: 27031 - Sistemas dinámicos Centro académico: 100 - Facultad de Ciencias Titulación: 453 - Graduado en Matemáticas

Créditos: 6.0 Curso: 4

Periodo de impartición: Segundo semestre

Clase de asignatura: Optativa

Materia:

1. Información Básica

1.1. Objetivos de la asignatura

La asignatura y sus resultados previstos responden a los siguientes planteamientos y objetivos:

La asignatura pretende ser una introducción a la teoría de sistemas dinámicos, presentando los conceptos básicos que son de aplicación en otras asignaturas, y proporciona al alumno una base sólida para el estudio de los procesos que presentan una evolución temporal determinista.

1.2. Contexto y sentido de la asignatura en la titulación

La asignatura se encuadra dentro del módulo *Ecuaciones diferenciales*. Es, en cierta manera, una continuación natural de la asignatura *Ecuaciones diferenciales ordinarias*, aunque sus objetivos y las técnicas utilizadas son distintas, y complementa la asignatura *Modelización matemática*. Los contenidos estudiados en ella pueden servir de ayuda en otras asignaturas, como *Simulación numérica de ecuaciones diferenciales ordinarias*, *Astronomía matemática* o *Mecánica celeste*.

1.3. Recomendaciones para cursar la asignatura

Es importante la asistencia a clase y la participación activa. Se deben realizar los problemas que se propongan y asimilar las explicaciones teórico-prácticas de la materia. Es conveniente seguir diariamente el desarrollo de la asignatura y poder responder a cuestiones explicadas en los días inmediatamente anteriores.

2. Competencias y resultados de aprendizaje

2.1. Competencias

Al superar la asignatura, el estudiante será más competente para:

- Extraer información cualitativa sobre las órbitas de un sistema dinámico
- Analizar la estabilidad de puntos de equilibrio y órbitas periódicas
- Identificar y clasificar bifurcaciones
- Determinar cuándo el comportamiento de una sistema dinámico es caótico
- Modelizar sistemas dinámicos que provienen de la física, la biología o la ingeniería y analizar su comportamiento cualitativo.

2.2. Resultados de aprendizaje

El estudiante, para superar esta asignatura, deberá demostrar los siguientes resultados:

• Reconocer un sistema dinámico tanto en tiempo discreto como continuo.

- Extraer información sobre el comportamiento cualitativo de un sistema dinámico.
- Analizar la estabilidad de puntos de equilibrio y órbitas periódicas de un sistema dinámico.
- · Identificar y clasificar bifurcaciones.
- Determinar cuándo el comportamiento de un sistema dinámico es caótico.
- Modelizar sistemas dinámicos que provienen de la física, la biología o la ingeniería.

2.3. Importancia de los resultados de aprendizaje

Proporcionan una formación de carácter optativo dentro del Grado. (Ver Contexto y sentido de la asignatura en la titulación). Permiten la comprensión de los sistemas que evolucionan con el tiempo cualquiera que sea su origen, físico, boiológico o puramente matemático.

3. Evaluación

3.1. Tipo de pruebas y su valor sobre la nota final y criterios de evaluación para cada prueba

El estudiante deberá demostrar que ha alcanzado los resultados de aprendizaje previstos mediante las siguientes actividades de evaluación:

- Entrega de ejercicios (teórico-prácticos) resueltos en las fechas previstas y/o redacción y exposición oral de un trabajo (40%).
- Realización de ejercicios en clase en pizarra (20%).
- Entrega de informes con los resultados obtenidos en las sesiones de prácticas con ordenador convenientemente redactados (40%).

Si el número de alumnos fuera muy elevado la evaluación consistiría en una prueba que supondría un 70% de la nota y las actividades anteriores el 30% restante. Todo ello sin menoscabo del derecho que, según la normativa vigente, asiste al estudiante para presentarse y, en su caso, superar la asignatura mediante la realización de una prueba global.

4. Metodología, actividades de aprendizaje, programa y recursos

4.1. Presentación metodológica general

El proceso de aprendizaje que se ha diseñado para esta asignatura se basa en lo siguiente:

Se alternarán las clases teóricas con la resolución de problemas, por parte del profesor y posteriormente por los alumnos. Se usará el ordenador para realizar los cálculos necesarios para aplicar la teoría. El estudiante deberá estudiar con asiduidad los resultados explicados y resolver los problemas propuestos.

4.2. Actividades de aprendizaje

El programa que se ofrece al estudiante para ayudarle a lograr los resultados previstos comprende las siguientes actividades:

Actividad 1: Clases teórico-prácticas con el siguiente temario:

- Sistemas dinámicos.
- Sistemas dinámicos lineales.
- · Puntos de equilibrio.
- Órbitas periódicas.
- Bifurcaciones
- Sistemas caóticos.

Actividad 2: Clases prácticas de ordenador, basadas en software de uso libre (Octave), orientadas a reforzar los conceptos.

Actividad 3: Participación activa del alumnado fomentando la presentación oral de resultados.

Las actividades docentes y de evaluación se llevarán a cabo de modo presencial salvo que, debido a la situación sanitaria, las disposiciones emitidas por las autoridades competentes y por la Universidad de Zaragoza dispongan realizarlas de forma telemática o semitelemática con aforos reducidos rotatorios.

4.3. Programa

- Sistemas dinámicos.
- Sistemas dinámicos lineales.
- Puntos de equilibrio.
- Órbitas periódicas.
- Bifurcaciones
- Sistemas caóticos.
- Aplicaciones.

4.4. Planificación de las actividades de aprendizaje y calendario de fechas clave

Calendario de sesiones presenciales y presentación de trabajos:

Las clases se imparten según el calendario académico establecido por la Universidad de Zaragoza y horario aprobado por la Facultad de Ciencias (ver página web). Las fechas concretas para la presentación de ejercicios resueltos y otros trabajos se anunciarán con la suficiente antelación.

- Entrega y exposición de ejercicios y/o trabajos propuestos, periódicamente durante el curso.
- Entrega de informes del trabajo práctico con ordenador.
- Examen final de la asignatura en las fechas determinadas por la Facultad de Ciencias.
- Durante el curso, en la web de la Facultad, se dará más información explícita.

4.5. Bibliografía y recursos recomendados

- Verhulst, Ferdinand. Nonlinear Differential Equations and Dynamical Systems: Springer, 1996.
- Perko, Lawrence. Differential equations and dynamical systems- 3rd ed. New York: Springer, 2001.
- Strogatz, Steven H.. Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering: Perseus Books, 2000.
- Meiss, James D.. Differential dynamical systems: Society for Industrial and Applied Mathematics, cop. 2007.
- Hirsch, Morris W.. Differential equations, dynamical systems, and an introduction to chaos- 2nd. ed. Amsterdam: Elsevier Academic Press, 2004.
- Wiggins, Stephen. Introduction to applied nonlinear dynamical systems and chaos- 2nd ed. New York: Springer, 2010.

http://psfunizar10.unizar.es/br13/egAsignaturas.php?codigo=27031