

Curso Académico: 2021/22

25214 - Meteorología y climatología

Información del Plan Docente

Año académico: 2021/22

Asignatura: 25214 - Meteorology and climatology Centro académico: 201 - Escuela Politécnica Superior Titulación: 571 - Graduado en Ciencias Ambientales

Créditos: 6.0 Curso: 2

Periodo de impartición: Primer cuatrimestre

Clase de asignatura: Obligatoria

Materia:

1. Información Básica

1.1. Objetivos de la asignatura

La asignatura y sus resultados previstos responden a los siguientes planteamientos y objetivos:

Se pretende, con la docencia de esta asignatura, proporcionar explicaciones científicas a los principales fenómenos meteorológicos y climatológicos. Esto se aborda tanto utilizando estrictos razonamientos físico-matemáticos en la mayor parte de los temas de Meteorología, como con una metodología más descriptiva en los temas de Climatología. En este último caso se hace especial mención de algunos de los Objetivos de Desarrollo Sostenible, ODS, de la Agenda 2030 (https://www.un.org/sustainabledevelopment/es/) y determinadas metas concretas, contribuyendo en cierta medida a su logro:

- Objetivo 13: Acción por el clima. Adoptar medidas urgentes para combatir el cambio climático y sus efectos.
 - Meta 13.1 Fortalecer la resiliencia y la capacidad de adaptación a los riesgos relacionados con el clima y los desastres naturales en todos los países.
 - Meta 13.2 Incorporar medidas relativas al cambio climático en las políticas, estrategias y planes nacionales
 - Meta 13.3 Mejorar la educación, la sensibilización y la capacidad humana e institucional respecto de la mitigación del cambio climático, la adaptación a él, la reducción de sus efectos y la alerta temprana.

1.2. Contexto y sentido de la asignatura en la titulación

Los contenidos de esta materia sirven de base para otras materias de cursos posteriores como las asignaturas de Contaminación (Atmosférica, de Aguas, Radiactiva, Acústica), Hidrogeología Ambiental y Tecnologías Limpias-Energías Renovables.

1.3. Recomendaciones para cursar la asignatura

Para el adecuado seguimiento de esta asignatura es recomendable haber superado la de Bases Físicas del Medio Ambiente de Primer Curso del Grado, así como la asistencia regular a las sesiones, tanto de teoría como de problemas.

Por otra parte, durante el semestre es imprescindible el estudio y el trabajo continuados, tanto por la naturaleza de esta disciplina, como por la posibilidad de realización de pruebas breves de autoevaluación.

2. Competencias y resultados de aprendizaje

2.1. Competencias

Al superar la asignatura, el estudiante será más competente para...

Competencias básicas:

- CB1. Que los estudiantes hayan demostrado poseer y comprender conocimientos en el área de las ciencias ambientales que parte de la base de la educación secundaria general, y se suele encontrar a un nivel que, si bien se apoya en libros de texto avanzados, incluye también algunos aspectos que implican conocimientos procedentes de la vanguardia de su campo de estudio
- CB2. Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio.
- CB3. Que los estudiantes tengan la capacidad de reunir e interpretar datos relevantes.

(normalmente dentro de las ciencias ambientales) para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética.

- CB4. Que los estudiantes puedan transmitir información, ideas, problemas y soluciones a un público tanto especializado como no especializado.
- CB5. Que los estudiantes hayan desarrollado aquellas habilidades de aprendizaje necesarias para emprender estudios posteriores con un alto grado de autonomía.

Competencias específicas:

CE1. Capacidad de interpretación del medio como sistema complejo: identificación de los factores, procesos e interacciones que configuran cualquier tipo de medio. Esto conlleva conocimientos fundamentales de todos los sistemas (hidrología, edafología, meteorología y climatología, zoología, botánica, geología, Sociedad y territorio, etc.), comprendiendo su constitución y procesos fundamentales (física, química y biología) y sus interacciones (ecología).

Competencias genéricas:

- CG1. La comprensión y dominio de los conocimientos fundamentales del área de estudio y la capacidad de aplicación de esos conocimientos fundamentales a las tareas específicas de un profesional del medio ambiente.
- CG2. Comunicación y argumentación, oral y escrita, de posiciones y conclusiones, a públicos especializados o de divulgación e información a públicos no especializados.
- CG3. Capacidad de resolución de los problemas, genéricos o característicos del área mediante la interpretación y análisis de los datos y evidencias relevantes, la emisión de evaluaciones, juicios, reflexiones y diagnósticos pertinentes, con la consideración apropiada de los aspectos científicos, éticos o sociales.
- CG5. Capacidad de razonamiento crítico (análisis, síntesis y evaluación). CG6. Capacidad de aplicación de los conocimientos teóricos al análisis de situaciones.
- CG6. Capacidad de aplicación de los conocimientos teóricos al análisis de situaciones.
- CG7. Dominio de aplicaciones informáticas relativas al ámbito de estudio, así como la utilización de internet como medio de comunicación y fuente de información.
- CG8. Capacidad de organización y planificación autónoma del trabajo y de gestión de la información.
- CG9. Capacidad de trabajo en equipo, en particular equipos de naturaleza interdisciplinar e internacional característicos del trabajo en este campo.

2.2. Resultados de aprendizaje

El estudiante, para superar esta asignatura, deberá demostrar los siguientes resultados...

- 1.- Enunciar, sintetizar, analizar, relacionar y aplicar los principios y fundamentos de Dinámica Atmosférica, Elementos y Factores Climáticos, y Cambios Climáticos.
- Interpretar cuantitativa y cualitativamente los resultados obtenidos en la resolución satisfactoria de determinados casos basados en fenómenos y procesos relacionados con el medioambiente.
- 3.- Expresar adecuadamente, en fondo y forma: claridad, organización?, tanto de forma oral como escrita, los métodos, los procesos, los resultados obtenidos y el análisis de los mismos en los casos encomendados para su estudio.
- 4.- Elaborar trabajos e informes de laboratorio haciendo un uso adecuado de las TIC (procesador de textos, hoja de cálculo, búsquedas bibliográficas en internet?) en relación a los fenómenos anteriores.
- 5.- Ejecutar trabajos de laboratorio encomendados en los que el alumno demuestre que es capaz de hacer un uso adecuado de la instrumentación básica en Meteorología (realizar medidas de irradiación solar en función del ángulo, de humedad relativa, coeficiente adiabático y densidad del aire, ...)
- 6.- Manejar simuladores sencillos del cambio climático.
- 7.- Analizar e interpretar información meteorológica y climatológica (régimen térmico, precipitaciones, vientos, insolación, humedad relativa, mapas de superficie y de altura, otros datos climáticos, ...)

Los resultados de aprendizaje 1, 2, 6 y 7 están directamente relacionados con las metas 13.1, 13.2 y 13.3 de los ODS, expuestas en los objetivos de la asignatura.

2.3. Importancia de los resultados de aprendizaje

Las competencias que forma esta asignatura son relevantes porque contribuyen al conocimiento básico de los procesos atmosféricos relacionados con el sistema Tierra-Atmósfera. Además, llevan implícito el desarrollo, en el estudiante, de habilidades de pensamiento de orden superior como el razonamiento, la solución de problemas y el pensamiento crítico. Como asignatura de formación obligatoria que es, sirve de sustento a un cierto número de asignaturas de cursos posteriores.

3. Evaluación

3.1. Tipo de pruebas y su valor sobre la nota final y criterios de evaluación para cada prueba

El estudiante deberá demostrar que ha alcanzado los resultados de aprendizaje previstos mediante las siguientes actividades de evaluacion

Realización de una prueba global presencial al final del semestre, que estará constituida por:

- 1) Examen presencial escrito con arreglo al programa de teoría de la asignatura, consistente en una prueba presencial escrita al final del semestre, según calendario de exámenes de la EPS.
- 2) Realización, presentación y defensa oral de un trabajo en grupo, consistente en un caso práctico en el que se ponga de manifiesto la relación entre los contenidos de la asignatura y el medio ambiente.
- 3) Un conjunto de prácticas de laboratorio y la presentación en plazo de los informes correspondientes.

Las actividades de evaluación 2 y 3 se pueden realizar, y es lo recomendado, a lo largo del curso en las fechas señaladas en la planificación temporal de la asignatura o en la convocatoria oficial al final del semestre.

Primera Convocatoria

En la fecha oficial especificada en el calendario de exámenes del centro.

Para poder superar la asignatura, a la Prueba Global deben presentarse todos los alumnos.

Aquellos estudiantes que no hayan realizado el Trabajo, y deseen hacerlo, deberán contactar con el profesorado responsable de la asignatura para que les asigne el tema del mismo, el cual deberá exponerse el día de la fecha oficial de examen.

En el caso de que un estudiante no haya realizado las Prácticas de Laboratorio a lo largo del semestre, deberá hacerlo el día de la fecha oficial de examen, conforme a lo establecido en la actividad de evaluación 3.

Para los estudiantes que soliciten cambio de fecha, de acuerdo con los supuestos especificados en el Artículo 5 del Reglamento de Normas de Evaluación del Aprendizaje, la Prueba Global tendrá las mismas características y restricciones que la realizada en la fecha de la convocatoria oficial.

Segunda Convocatoria

En la fecha oficial especificada en el calendario de exámenes del centro.

Los estudiantes que tengan aprobadas algunas de las actividades realizadas durante el curso, no tendrán que volver a realizarlas.

El examen global tendrá la misma estructura, restricciones y condiciones que el de la primera convocatoria.

Criterios de Evaluación

Prácticas de Laboratorio

En la evaluación de las prácticas de laboratorio, la nota obtenida dependerá de:

- a) La exactitud de los resultados obtenidos en las diferentes secciones de cada práctica.
- b) La calidad de los informes entregados al finalizar cada una de las prácticas. Las pautas de valoración están recogidas en el documento: Normas Generales para la elaboración de informes.
- c) La participación activa y el interés demostrado por cada uno de los integrantes del grupo durante el desarrollo de la sesión de laboratorio.

Cada práctica se puntuará de 0 a 10 y aunque su ejecución se realice por parejas y sólo se entregue un informe, los integrantes de dicha pareja podrán obtener calificaciones diferentes. Una vez realizadas todas las sesiones, la puntuación obtenida en las Prácticas de Laboratorio será sobre un máximo de 10. Si la nota conseguida es inferior a 5, la asignatura no se considerará aprobada. Su peso en la calificación final de la asignatura será del 20%. Esto quiere decir que, como máximo, contribuirá con 2 puntos a la calificación final.

Trabajo en Grupo

Cada estudiante efectuará un trabajo, enmarcado en las actividades académicamente dirigidas, que se evaluará teniendo en cuenta la corrección de los resultados obtenidos, así como la calidad de la presentación del trabajo escrito y la claridad, el orden y la capacidad de responder a las preguntas que se planteen durante la exposición ante el profesor y el resto del curso. Se debe tener en cuenta que aunque la ejecución de este trabajo se realice en grupo, sus integrantes podrán obtener calificaciones diferentes. Esta actividad se calificará con un máximo de 10 puntos, y su repercusión en la nota final de la asignatura será del 10%.

Examen Global

Por último, se llevará a cabo un examen presencial correspondiente a la convocatoria oficial que constará de problemas y cuestiones de opción múltiple. Los criterios generales aplicados en la corrección de los exámenes, serán:

Se valorará favorablemente:

- La solución correcta de los ejercicios propuestos, así como el proceso seguido hasta obtenerla y la interpretación de los resultados obtenidos.
- La comprensión de los procesos meteorológicos.
- La destreza y habilidad en el manejo de las herramientas matemáticas.
- La utilización correcta de las unidades en las magnitudes físicas.
- La claridad en los esquemas, figuras y representaciones gráficas.
- El orden, la presentación e interpretación de resultados.

Se valorará desfavorablemente:

- La ausencia de explicaciones en el desarrollo de los problemas.
- El desorden y la mala presentación.
- Las faltas de ortografía.

Se calificará sobre 10 y su repercusión en la nota final será del 70 %. Si la nota conseguida en esta prueba es inferior a 4, la asignatura no se considerará aprobada, independientemente de las notas obtenidas en el resto de las actividades que se evalúan.

Evaluación Global

El sistema mediante el que el estudiante es evaluado en esta asignatura es el de *Evaluación Global* consistente en: Trabajo, Prácticas de Laboratorio y Examen Global.

Resumiendo todo lo anterior, la calificación final sobre 10 (teniendo en cuenta las restricciones especificadas anteriormente), será la obtenida aplicando la siguiente fórmula:

Calificación Final (C.F.) = 70% nota examen + 20% nota prácticas de laboratorio + 10% nota trabajo

Si no se alcanzan los requisitos mínimos en el Examen Global (4 puntos sobre 10) y en las Prácticas de Laboratorio (5 puntos sobre 10), la asignatura no se considerará aprobada aunque la calificación final, C.F., según la ponderación arriba indicada sea igual o superior a 5. En estos casos:

Si C.F. ? 4, la calificación final será: Suspenso, 4.

Si C.F. < 4, calificación final será: Suspenso, C.F.

En cuanto a las metas ODS relacionadas con esta asignatura, los fundamentos de climatología, que comprenden los factores que influyen en el clima, los tipos de clima existentes en la Tierra, técnicas para la evaluación de cambios en el clima, cambios climáticos naturales y cambio climático generado por el ser humano, se evalúan en el examen global con un peso aproximado del 20% del examen, es decir, en torno al 14% de la asignatura. Además, entre los temas propuestos del trabajo en grupo (que supone el 10% de la asignatura), se encuentran varios de climatología.

4. Metodología, actividades de aprendizaje, programa y recursos

4.1. Presentación metodológica general

El proceso de aprendizaje que se ha diseñado para esta asignatura se basa en lo siguiente:

Sesiones teóricas que consistirán, fundamentalmente, en lecciones magistrales participativas. Dentro de éstas cabe destacar las dedicadas a la resolución de problemas, en las que se promoverá la participación de los alumnos de forma más intensa que en las dedicadas a la exposición de los contenidos teóricos.

Las sesiones de laboratorio (en número de cuatro), consistirán en la realización, por parejas, de lo detallado en el programa de prácticas y en la elaboración de un informe conteniendo los resultados obtenidos en las mediciones y las respuestas a las preguntas planteadas en el correspondiente guión. En la elaboración de dicho informe, los alumnos deben cumplir lo establecido en las Normas correspondientes.

Por último, dentro de las actividades académicamente dirigidas se llevará a cabo, por grupos de 3 estudiantes, la resolución de un *trabajo práctico*, especialmente enfocado a la aplicación de conceptos meteorológicos al campo de las ciencias ambientales. Cada grupo tendrá varias sesiones de tutoría grupal en las que irán presentando al profesor sus avances y las dificultades que les vayan surgiendo. Finalmente, todos los grupos tendrán que realizar una exposición ante el profesor y el resto de los alumnos de la asignatura, de los resultados obtenidos en su trabajo y estar dispuestos a responder a cuantas aclaraciones o preguntas se les formulen por parte de la audiencia. Para esta exposición deberán utilizar las aplicaciones informáticas apropiadas.

4.2. Actividades de aprendizaje

El programa que se ofrece al estudiante para ayudarle a lograr los resultados previstos comprende las siguientes actividades...

Sesiones teóricas y prácticas de resolución de problemas en el aula

Las sesiones teóricas consistirán fundamentalmente en lecciones magistrales participativas, siendo el bloque de Climatología el que se alinea con las metas 13.1, 13.2 y 13.3 de los ODS. Al comenzar cada tema, se le proporciona al alumno, tanto el contenido teórico que el profesor va a exponer en clase como una colección de ejercicios con sus soluciones, algunos de los cuales se resuelven en el aula, quedando el resto para trabajo no presencial del estudiante.

Prácticas de laboratorio

Antes de comenzar el periodo de prácticas el alumno puede disponer de un cuaderno con los guiones de las cuatro prácticas que tiene que realizar en el laboratorio, así como una información preliminar sobre la correcta presentación de los informes que deberá entregar.

Sesiones de tutorización

En grupos de tres estudiantes, con la finalidad de asesorarles en la realización del trabajo académicamente dirigido propuesto por el profesor. La temática del mismo se asigna por sorteo, estando algunas enmarcadas dentro de las metas 13.1, 13.2 y 13.3 de los ODS. Para su realización resulta de gran ayuda la consulta de la bibliografía recomendada, tanto básica como complementaria.

4.3. Programa

Programa de Teoría

- Tema 1: Introducción
- Tema 2: La atmósfera
- Tema 3: Balance energético en la atmósfera
- Tema 4: Termodinámica de la atmósfera
- Tema 5: Fenómenos atmosféricos
- Tema 6: Dinámica atmosférica
- Tema 7: El clima
- Tema 8: Clasificaciones climáticas
- Tema 9: Cambios climáticos

Programa de Prácticas de Laboratorio

Práctica 1.- Radiación incidente sobre una placa fotovoltaica

- a) Dependencia del voltaje generado con el ángulo de incidencia.
- b) Dependencia del voltaje generado con la distancia.

Práctica 2.- Determinación de la densidad del aire y de su humedad relativa

- a) Determinación de la densidad del aire.
- b) Determinación de la temperatura del punto de rocío.
- c) Determinación de la humedad relativa del aire.

Práctica 3.- Determinación del coeficiente adiabático del aire

- a) Medida del periodo del MAS del oscilador.
- b) Cálculo del coeficiente adiabático del aire.

Práctica 4.- Transmisión de partes meteorológicos

- a) Descifrado y transcripción gráfica de partes meteorológicos.
- b) Cifrado y transcripción gráfica de partes meteorológicos.

Normas para la Elaboración de Informes de Laboratorio

NORMAS GENERALES PARA LA ELABORACIÓN DE INFORMES

PRESENTACIÓN DE RESULTADOS Y DISCUSIÓN

Al comienzo de cada práctica se debe entregar al profesor el informe correspondiente a la práctica anterior, para su corrección y calificación. Es necesario demostrar, tanto en las respuestas de las cuestiones previas como en la calidad de los informes, un aprovechamiento mínimo.

A continuación se dan algunas normas generales y consejos acerca de la organización y contenido de estos resúmenes.

- En los guiones de las prácticas existe una introducción teórica que no es necesario, en general, repetir. Sí es conveniente, sin embargo, redactar una breve introducción en la que se comente y discuta la metodología y objetivos de la práctica.

- A continuación se presentan de una forma ordenada los datos medidos en el laboratorio y los resultados a que conducen tras su elaboración. Siempre que sea posible, los datos y los resultados deben presentarse en una o varias tablas. Las unidades en que están expresadas las diversas magnitudes deben aparecer explícitamente en la cabecera de las tablas. Además, no se debe olvidar nunca poner las unidades en que se expresan datos y resultados.
- Con frecuencia, se va a medir la dependencia de una magnitud o variable, y, con otra variable, x; por ejemplo, el estiramiento de un resorte en función de la carga que se cuelga de él. En estos casos, las medidas realizadas deben presentarse tanto en una tabla como en una representación gráfica realizada en papel milimetrado. En ella deben aparecer claramente remarcados los puntos experimentales (x,y) medidos en el laboratorio (mediante una cruz, aspa o "punto gordo"). Si en una misma gráfica se presentan varias dependencias y1(x), y2(x), emplear colores o símbolos diferentes para representar los puntos experimentales de cada una de ellas, para poder distinguirlos claramente.
- En las gráficas debe representarse también, en trazo continuo , la dependencia del tipo esperado teóricamente que mejor se ajuste a los puntos experimentales medidos (no una línea quebrada saltando de punto a punto). En particular, si la dependencia esperada es de tipo lineal, y = a.x + b, junto a los puntos experimentales ha de representarse la recta que mejor se ajusta a los mismos, cuyos parámetros a y b se determinan empleando el método estadístico de mínimos cuadrados.
- En las gráficas debe realizarse una elección adecuada de las escalas en los ejes x e y, de forma que la dependencia y(x) quede claramente puesta de manifiesto. Por ejemplo, si la variable x para los diversos puntos experimentales toma valores entre x = 21 y x = 24 unidades, el eje x de la gráfica debe cubrir aproximadamente (por exceso) este rango de variación, y no mucho más. En concreto, para el ejemplo anterior sería razonable escoger una escala para el eje x que cubriese en el papel milimetrado el rango x = 20 25, pero no tendría ningún sentido escogerla cubriendo el rango x = 0 25 (los puntos aparecerían prácticamente en vertical, sin que se pudiera apreciar la dependencia con x). Por supuesto, lo mismo puede decirse en cuanto a la elección de la escala para el eje y. La escala escogida debe indicarse sobre los propios ejes en divisiones equidistantes, sin olvidar poner las unidades en las que se expresan las variables.
- Los resultados numéricos, generalmente, se obtienen como promedio de una serie de medidas independientes de la misma magnitud. En estos casos, supuesto que los posibles errores en cada medida son aleatorios, es posible determinar el error probable R del resultado promedio. El valor de R frente al de x nos da una idea de la precisión en la determinación de x con el método de medida empleado (cuanto menor sea R frente a x, más precisa es la determinación). Para poner de manifiesto la precisión del resultado, es costumbre expresarlo en la forma $x \pm R$. Por ejemplo, si se mide varias veces el período T de oscilación de un sistema y a partir de las diversas medidas se obtiene T = 1.25764 s y un error probable R = 0.013 s, el resultado se indica en la forma $T = 1.258 \pm 0.013$ s.
- Nótese en el ejemplo anterior la eliminación de dígitos no significativos de T (en comparación con el valor de R) a la hora de dar el resultado. En otros casos, cuando la medida de una magnitud x es directa (no se obtiene a partir de un promedio de medidas), el número de dígitos con que debe expresarse el resultado es el acorde con la precisión estimada para los aparatos de medida empleados para obtenerla (rara vez mas de tres o cuatro, salvo que el método y el instrumental de medida sean de gran precisión). Por ejemplo, si el resultado de operar con unos datos experimentales es x = 53.032.794,23 unidades y la precisión de las medidas es ± 1%, la forma correcta de indicarlo es x = 5,30x107, eliminando los dígitos no significativos (fuera de precisión).
- Por último, en el resumen de toda práctica debe aparecer una discusión objetiva del método de medida y de los resultados obtenidos. Recordar que, a la hora de valorar el aprovechamiento en la realización de una práctica a través de su resumen, la objetividad de la discusión es tan importante, o más que la exactitud de los resultados. Por ello, hay que insistir en la necesidad de realizar la práctica y la toma de datos y notas desde un punto de vista lógico, crítico y cuantitativo (es decir, científico). En este sentido, los comentarios ambiguos o subjetivos suelen estar fuera de lugar porque son inútiles.
- En concreto, hay que discutir cuantitativamente la exactitud y precisión de los resultados, teniendo en cuenta la precisión del método y aparatos de medida, los errores probables de las determinaciones promedio o ajustes estadísticos a una recta, la influencia de aproximaciones en las previsiones teóricas, las dificultades de realización práctica con respecto al método ideal, etc. Comentarios como "creemos que el resultado es bastante exacto", sin indicar por qué y "cuánto" de exacto (% de error probable estimado o calculado) no tienen ningún sentido físico.
- En algunos casos, la práctica va a consistir en determinar experimentalmente el valor de una constante fundamental o de una magnitud de suficiente interés real como para que aparezca recogida en las tablas que se presentan en muchos libros de texto. En estas ocasiones es necesario realizar una comparación entre su valor real y el obtenido a partir de las medidas en el laboratorio, discutiendo las posibles fuentes de error que justifiquen la diferencia entre ambos, si existe.

4.4. Planificación de las actividades de aprendizaje y calendario de fechas clave

Calendario de sesiones presenciales y presentación de trabajos

Se estima que un estudiante medio debe dedicar a esta asignatura, de 6 ECTS,un total de 150 horas que deben englobar tanto las actividades presenciales como las no presenciales. La dedicación a la misma debe procurarse que se reparta de forma equilibrada a lo largo del cuatrimestre. Con esta previsión, la carga semanal del estudiante en horas queda reflejada en el siguiente cronograma:

Tipo	1	2	3	4	5	6	7	8	9	10 ⁽³⁾	11	12	13	14	15	16	17	18	19	20	21	Total
actividad /			(1)			(2)												(4-5)				
Semana																						
Actividad																						56
Presencial																						
Teoría	2	2	4	2		2	2	2	2	2	2	2		2	2							28
1																						

Problemas	2		2		2	2			2			2	2	1								15
Prácticas Iaboratorio		2		2				2			2											8
Trabajos en grupo							2			2				1								5
Actividad N o presencial																						94
Trabajo individual	4	4	1	3	4	2	4	4	1	3	4	2	4	4	6	4	4	6	6	6	4	80
Trabajo en grupo			2		2	2			4			2	2									14
TOTAL	8	8	9	7	8	8	8	8	9	7	8	8	8	8	8	4	4	6	6	6	4	150

- (1) El viernes 1 de octubre se seguirá horario de lunes
- (2) El viernes 22 de octubre se seguirá horario de martes
- (3) El jueves 18 de noviembre se seguirá horario de lunes
- (4) El lunes 10 de enero se seguirá horario de viernes
- (5) El martes 11 de enero se seguirá horario de viernes

Para superar las prácticas de laboratorio se tendrá en cuenta, en primer lugar, que es recomendable haber asistido a las cuatro sesiones detalladas en el apartado de actividades y se valorarán especialmente los resultados obtenidos, la calidad del informe correspondiente y la actitud del estudiante en el laboratorio.

Además, cada estudiante realizará un trabajo en grupo, con el asesoramiento y tutoría del profesor. Al igual que en el caso anterior, se valorarán las características del informe escrito y la claridad, el orden y la capacidad de responder a las preguntas que se planteen durante la exposición ante el profesor y el resto del grupo. Las fecha de la prueba global escrita en las convocatorias oficiales puede consultarse aquí.

El calendario semanal de entregas de informes de laboratorio, y de entrega y exposición de trabajos está publicado en esta misma guía en el cronograma especificado en el último apartado.

No obstante todo lo anterior, el estudiante podrá realizar las actividades mencionadas anteriormente al finalizar el semestre, según se detalla en el apartado de evaluación de esta misma guía.

4.5. Bibliografía y recursos recomendados

BB Aguirre de Cárcer, Íñigo. Apuntes de meteorología y climatología para el medioambiente / Iñigo Aguirre de Cárcer y Pilar Carral . Madrid : Ediciones de la Universidad Autónoma de Madrid, D.L. 2008

BB Barry, Roger G.. Atmósfera, tiempo y clima / Roger G. Barry, Richard J. Chorley . 7ª ed Barcelona : Omega, D.L. 1999

BB FERNÁNDEZ SÁNCHEZ, J.; CRESPO DEL ARCO, E.; ZÚÑIGA LÓPEZ, I. Problemas de meteorología y climatología. [S. l.: s. n.].

BB SÁNCHEZ COHEN, I. Elementos para entender el cambio climático y sus impactos. [S. I.]: Editorial Miguel Ángel Porrúa, 2014

BB Sendiña Nadal, Irene. Fundamentos de meteorología / Irene Sendiña Nadal, Vicente Pérez Muñuzuri . Santiago de Compostela : Universidade de Santiago de Compostela, Servizo de Publicacións e Intercambio Científico, 2006

BB SEOÁNEZ CALVO, M. Tratado de climatología aplicada a la ingeniería medioambiental: análisis climático. Uso del análisis climático en los estudios medioambientales. [S. l.: s. n.].

BB Vallée, Jean-Louis. Guía técnica de meteorología / Jean-Louis Vallée ; Traducción y adaptación a la Península Ibérica por Bernat Codina Sánchez y Augusto Burgueño Rivero Barcelona : Omega , D.L.2005

BB ZÚÑIGA LÓPEZ, I.; CRESPO DEL ARCO, E. Meteorología y climatología. [s. I.]: Universidad Nacional de Educación a Distancia, 2009.

BC Ledesma Jimeno, Manuel. Climatología y meteorología agrícola / M. Ledesma Jimeno Madrid : Paraninfo, D.L. 2000

BC Ledesma, Manuel. Principios de meteorología y climatología / Manuel Ledesma Jimeno . 1ª ed. Madrid : Paraninfo, 2011

La bibliografía actualizada de la asignatura se consulta a través de la página web: http://psfunizar10.unizar.es/br13/egAsignaturas.php?id=10974