

Curso: 2020/21

26951 - Física y tecnología nuclear

Información del Plan Docente

Año académico: 2020/21

Asignatura: 26951 - Física y tecnología nuclear **Centro académico:** 100 - Facultad de Ciencias

Titulación: 447 - Graduado en Física

Créditos: 5.0 Curso: 3

Periodo de impartición: Segundo semestre

Clase de asignatura: Optativa

Materia: ---

1.Información Básica

1.1. Objetivos de la asignatura

Conocer y saber aplicar los fundamentos y principales aplicaciones de la física y la tecnología nuclear.

1.2.Contexto y sentido de la asignatura en la titulación

Los radioisótopos y la tecnología nuclear son un desarrollo del siglo XX con inmumerables abplicaciones en campos tan diversos como la medicina, la industria, la agricultura, la producción de energía y, por supuesto, la investigación.

1.3. Recomendaciones para cursar la asignatura

Se recomienda haber cursado Física Nuclear y de Partículas.

2. Competencias y resultados de aprendizaje

2.1.Competencias

Conocer el uso de los radioisótopos y las radiaciones ionizantes en medicina, industria e investigación.

Conocer los fundamentos, consecuencias y aplicaciones de la fisión y la fusión nuclear para la producción de energía.

2.2.Resultados de aprendizaje

El estudiante, para superar esta asignatura, deberá demostrar los siguientes resultados...

Conocer los tipos de radiodiagnóstico y radioterapia, sus rangos de aplicación, ventajas e inconvenientes.

Diseñar mecanismos sencillos para controlar algunos procesos industriales.

Aplicar modelos sencillos para describir el comportamiento de un reactor nuclear.

Conocer los fundamentos y las principales características de distintos tipos de reactores de fisión.

Reconocer situaciones de riesgo durante la explotación, gestión de residuos y vida útil de un reactor de fisión.

Conocer los fundamentos y el estado actual de la obtención de energía mediante fusión y sus perspectivas como fuente de energía.

2.3.Importancia de los resultados de aprendizaje

La amplia utilización actual de radioisótopos y tecnología nuclear en campos tan diversos como la medicina, industria, agricultura, producción de energía, investigación, etc. hace que una formación, al menos básica, sobre sus principales aplicaciones complemente la formación recibida por el alumno en otras materias y, además, lo sitúe en una plataforma más favorable para el desempeño de trabajos muy específicos como el de radiofísico hospitalario o supervisor de instalaciones radiactivas y, también, para tareas relacionadas con la radiología industrial, el control de calidad, la evaluación de riesgos, la epidemiología, los ensayos de materiales, producción de energía en plantas nucleares, etc., además de la investigación científica en este campo.

3. Evaluación

3.1. Tipo de pruebas y su valor sobre la nota final y criterios de evaluación para cada prueba

El estudiante deberá demostrar que ha alcanzado los resultados de aprendizaje previstos mediante las siguientes actividades de evaluacion

Actividad 1. Evaluación continua basada en la realización de prácticas de laboratorio (**nota L**). Los alumnos deberán entregar un informe escrito de la labor realizada en el laboratorio y los principales resultados obtenidos. Los informes deberán ser entregados con una antelación mínima de quince días lectivos con respecto a la fecha de la prueba teórico-práctica. En esta actividad se pueden obtener hasta 10 puntos, siendo necesario un mínimo de 4 puntos para superar la asignatura. La calificación de esta actividad contribuye un 25% a la calificación final.

Actividad 2. Evaluación continua basada en la elaboración de trabajos (**nota T**). Los alumnos podrán elaborar trabajos adicionales sobre algún tema relacionado con la asignatura que deberán ser presentados durante el horario de clases. En esta actividad se pueden obtener hasta 10 puntos. La calificación de esta actividad contribuye un 25% a la calificación final.

Actividad 3. Evaluación continua basada en la resolución de problemas y cuestiones prácticas durante el desarrollo de las clases (**nota C**). En esta actividad se pueden obtener hasta 10 puntos. La calificación de esta actividad contribuye un 15% a la calificación final.

El resto de la evaluación se llevará a cabo mediante la realización de la prueba teórico-práctica (**nota P**) de la prueba global única. En esta actividad se pueden obtener hasta 10 puntos y contribuirá un 35% a la nota final.

La nota final será la mayor de las siguientes:

```
N = 0.25 * L + 0.25 * T + 0.15 * C + 0.35 * P

N = 0.25 * L + 0.25 * T + 0.50 * P

N = 0.25 * L + 0.15 * C + 0.60 * P

N = 0.25 * L + 0.75 * P
```

teniendo que ser mayor o igual a 5 puntos para superar la asignatura.

Superación de la asignatura mediante una prueba global única

La evaluación se llevará a cabo mediante la realización de una prueba global única que constará de las siguientes partes:

Prueba teórico-práctica (**nota P**). Realización de una prueba teórico-práctica en el periodo de exámenes establecido por el Centro. . La calificación de esta actividad contribuye un 75% a la calificación final.

Prueba práctica de laboratorio (**nota L**). La calificación de esta actividad contribuye un 25% a la calificación final. Es necesario un mínimo de 4 puntos en esta parte para superar la asignatura.

La nota final será:

```
N = 0.25 * L + 0.75 * P
```

teniendo que ser mayor o igual a 5 puntos para superar la asignatura

4. Metodología, actividades de aprendizaje, programa y recursos

4.1. Presentación metodológica general

El proceso de aprendizaje que se ha diseñado para esta asignatura se basa en lo siguiente:

- 1. Clases de teoría y problemas. Son clases presenciales en las que se desarrolla de forma secuencial el programa de la asignatura y se aplican a casos prácticos los conocimientos adquiridos. Después de cada tema se plantean preguntas y pequeñas cuestiones así como la resolución de problemas?tipo y supuestos prácticos para ayudar a una mejor comprensión de los contenidos, fomentando en todo momento la participación activa de los alumnos.
- 2. Prácticas de laboratorio. Se concretan en la realización, en pequeños grupos, de un conjunto de prácticas de laboratorio en el que se aplican los conceptos y técnicas expuestas en clase de teoría a situaciones concretas.
- 3. De forma voluntaria, los alumnos pueden también elaborar y presentar en clase trabajos adicionales sobre algún tema en el contexto de la asignatura que no se haya expuesto en clase o sobre el que desee profundizar en algún modo.

4.2. Actividades de aprendizaje

Las actividades docentes y de evaluación se llevarán a cabo de modo presencial salvo que, debido a la situación sanitaria, las disposiciones emitidas por las autoridades competentes y por la Universidad de Zaragoza dispongan realizarlas de forma telemática.

El curso incluye 5 ECTS organizados de la siguiente forma:

- Clases de teoría (3,5 ECTS): 35 horas
- Clases de problemas (1 ECTS): 10 horas
- Prácticas de laboratorio (0,5 ECTS): 5 horas

4.3.Programa

Radioisótopos en medicina. Producción de radioisótopos. Técnicas de imagen. Técnicas de radioterapia.

Aplicaciones industriales y científicas. Trazadores. Control de procesos. Esterilización. Técnicas de datación. Métodos de análisis.

Fisión Nuclear. Interacción neutrón?materia. Reacción en cadena y reactores nucleares. Ciclo del combustible nuclear. Gestión de residuos.

Fusión Nuclear. Física de un reactor de fusión. Confinamiento del plasma. Perspectivas para la producción de electricidad.

4.4. Planificación de las actividades de aprendizaje y calendario de fechas clave

Calendario de sesiones presenciales y presentación de trabajos

Clases de teoría y problemas. 4.5 créditos (3.5 créditos de clases teóricas y 1 crédito de problemas). El horario de estas clases será asignado por el Centro.

Prácticas de laboratorio. 0.5 créditos. Las fechas se fijarán al comienzo del semestre teniendo en cuenta el número de alumnos matriculados y la disponibilidad de los laboratorios y de la instrumentación.

La evaluación continua en el aula y la presentación de trabajos se realizará en el horario de clases teóricas y de problemas.

La prueba teórico?práctica se realizará durante el periodo de exámenes establecido por el Centro en la fecha que preestablecerá el profesor.

El informe del laboratorio deberá ser entregado con una antelación mínima de quince días lectivos respecto a la fecha de la prueba teórico?práctica.

La prueba práctica en el laboratorio para aquellos alumnos que no hayan entregado el informe dentro del plazo señalado se realizará durante el periodo de exámenes establecido por el Centro en la fecha que preestablecerá el profesor.

4.5.Bibliografía y recursos recomendados