

Curso: 2019/20

60040 - Sistemas de detección de radiación

Información del Plan Docente

Año académico: 2019/20

Asignatura: 60040 - Sistemas de detección de radiación

Centro académico: 100 - Facultad de Ciencias

Titulación: 589 - Máster Universitario en Física y Tecnologías Físicas 538 - Máster Universitario en Física y Tecnologías Físicas

Créditos: 5.0 Curso: 1

Periodo de impartición: Segundo semestre

Clase de asignatura: Optativa

Materia: ---

1.Información Básica

1.1. Objetivos de la asignatura

La asignatura y sus resultados previstos responden a los siguientes planteamientos y objetivos:

Esta asignatura es recomendable para cualquier estudiante interesado en conocer procedimientos experimentales en física. Aprenderá la física y electrónica necesaria para entender el funcionamiento y operación de los principales tipos de detectores de radiación y para poder diseñar, montar, poner a punto y realizar experimentos en un laboratorio científico. También aprenderá las características de las señales eléctricas producidas y algunas técnicas de procesado de señales.

1.2.Contexto y sentido de la asignatura en la titulación

Esta asignatura, junto con "Instrumentación Inteligente" y "Técnicas de Imagen y Radiofísica", constituye una formación rigurosa en técnicas experimentales, que resultan muy útiles a futuros investigadores no sólo en el campo de los detectores de radiación sino también en otros dominios de la física e ingeniería.

1.3. Recomendaciones para cursar la asignatura

Esta asignatura se dedicará a exponer y analizar los sistemas de detección de radiación. Para ello se explicarán los principios de operación y características básicas de diversos detectores de radiación, así como la electrónica y procesado de señales asociados a dichos detectores. Se estudiarán también algunas aplicaciones en industria, medicina y física de partículas. No hay requisitos previos específicos para cursar esta asignatura, aunque es aconsejable tener un grado o licenciatura en física o ingeniería o, al menos, tener unos conocimientos básicos sobre electrónica y radiación. Las competencias y resultados del aprendizaje adquiridos se complementan con los de otras asignaturas del máster como "Instrumentación Inteligente" (primer cuatrimestre) y "Técnicas de Imagen y Radiofísica" (segundo cuatrimestre).

2. Competencias y resultados de aprendizaje

2.1.Competencias

Al superar la asignatura, el estudiante será más competente para:

- Consolidar los conocimientos avanzados y la interrelación entre los diversos campos de la Física y las Tecnologías Físicas (CE3)
- Integrar conocimientos, enfrentarse a la complejidad y formular juicios con información limitada en el ámbito de la Física y de sus Tecnologías (CE4)
- Profundizar en el análisis, tratamiento e interpretación de datos experimentales (CE5)
- Conocer el grado de importancia de las investigaciones y las aplicaciones industriales de la Física y sus Tecnologías, así como sus implicaciones sociales y económicas (CE6)
- Conocer las fuentes de radiación
- Entender los principios físicos de los dispositivos de detección y su dominio de aplicación.
- Conocer y comprender la estructura y funcionamiento de los principales elementos que integran los sistemas de detección y medida de la radiación

- Conocer las técnicas matemáticas de conformación de pulsos y procesado de la señal.
- Aprender metodología de análisis, diseño y caracterización experimental de circuitos electrónicos específicos de sistemas de detección.
- Conocer los efectos de la radiación y el ruido en los dispositivos y circuitos electrónicos.

2.2.Resultados de aprendizaje

El estudiante, para superar esta asignatura, deberá demostrar los siguientes resultados:

- El estudiante es capaz de describir el espectro de energía de diferentes fuentes de radiación y distinguir las señales que deja la interacción de la radiación en los materiales usados comúnmente como detectores.
- El estudiante es capaz de identificar el detector más adecuado para cada tipo de radiación, rango de energía o propósito.
- El estudiante conoce cómo la carga eléctrica, calor o luz producidos en un detector por la radiación se convierten en un pulso eléctrico.
- El estudiante es capaz de calcular el efecto del ruido electrónico sobre las medidas de tiempo y amplitud.
- El estudiante es capaz de analizar y diseñar un circuito electrónico analógico de conformación de pulsos para mediciones de amplitud y tiempo.
- El estudiante es capaz de diseñar sistemas de digitalización de pulsos.
- El estudiante es capaz de configurar un sistema completo de medida de radiación ionizante.
- El estudiante es capaz de calcular los efectos de la radiación en dispositivos semiconductores.
- El estudiante es capaz de utilizar diferentes equipos de detección en el laboratorio e interpretar los resultados.

2.3.Importancia de los resultados de aprendizaje

Esta asignatura enseñará al estudiante a diseñar, montar, poner a punto y realizar experimentos en un laboratorio científico. Le dotará de una formación básica pero sólida sobre la física y electrónica necesaria para entender el funcionamiento y operación de los principales tipos de detectores de radiación. Esto debería permitirle en el futuro aprender y utilizar correctamente nuevas técnicas de detección en laboratorios de universidades, centros de investigación, industrias, hospitales, etc. En resumen, consolidará sus habilidades experimentales adquiridas en el grado o licenciatura.

3. Evaluación

3.1.Tipo de pruebas y su valor sobre la nota final y criterios de evaluación para cada prueba

El estudiante deberá demostrar que ha alcanzado los resultados de aprendizaje previstos mediante las siguientes actividades de evaluacion

Evaluación continua del aprendizaje del estudiante mediante la resolución de problemas, cuestiones y otras actividades propuestas por el profesorado de la asignatura. Esta actividad supondrá un 50% de la nota final.

La asignatura tendrá varias sesiones prácticas en el laboratorio. Los estudiantes deberán entregar informes escritos de la labor realizada en el laboratorio. Esta actividad supondrá un 50% de la nota.

Superación de la asignatura mediante una prueba global única

La asignatura ha sido diseñada para estudiantes que asistan a las clases presenciales en el aula y en el laboratorio, y realicen las actividades de evaluación anteriormente expuestas. Sin embargo, habrá también una prueba de evaluación para aquellos estudiantes que no hayan realizado las actividades de evaluación o no las hayan superado.

Esta prueba de evaluación global se realizará en las fechas establecidas por la Facultad de Ciencias y consistirán en dos partes:

- 1. Una prueba teórico-práctica con problemas y cuestiones relacionados con los principales conceptos discutidos en la asignatura. El estudiante dispondrá de 90 minutos para realizar la prueba y esta supondrá el 50% de la nota final.
- 2. Un ejercicio práctico en el que se pedirá al estudiante que describa los elementos y configuración de un montaje experimental utilizado en la asignatura y que, a continuación, lo monte y ponga a punto en el laboratorio. El estudiante dispondrá de 90 minutos para realizar la prueba y esta supondrá el 50% de la nota final.

Calificación de Matrícula de Honor

La mención "Matrícula de Honor" se otorgará a estudiantes que hayan obtenido una calificación igual o superior a 9 en la asignatura. En el caso que haya más estudiantes con dicha calificación que el número de Matrículas de Honor que la normativa de la Universidad de Zaragoza permite otorgar, se otorgarán todas las permitidas a los estudiantes que tengan las mejores calificaciones finales.

4. Metodología, actividades de aprendizaje, programa y recursos

4.1. Presentación metodológica general

El proceso de aprendizaje que se ha diseñado para esta asignatura se basa en lo siguiente:

Esta asignatura está organizada combinando clases teóricas, de problemas y prácticas. La estrategia elegida por el profesorado para alcanzar los objetivos planteados será clases teóricas en el aula para introducir los conocimientos básicos requeridos para resolver problemas y aprender a afrontar los problemas y dificultades de un laboratorio. A lo largo del curso se intercalarán clases interactivas de resolución de problemas y sesiones de trabajo en el laboratorio.

La asignatura está organizada en tres actividades: clases teóricas (3 ECTS), clases interactivas de resolución de problemas (1 ECTS) y trabajo en el laboratorio (1 ECTS).

4.2. Actividades de aprendizaje

El programa que se ofrece al estudiante para ayudarle a lograr los resultados previstos comprende las siguientes actividades:

- Clases teóricas sobre los principales conceptos.
- Clases interactivas de resolución de problemas.
- Sesiones de trabajo en el laboratorio. El estudiante realizará experimentos y redactará informes con los resultados obtenidos.

4.3.Programa

- 1. Fuentes de radiación e interacciones
- 2. Fundamentos físicos y propiedades generales de los detectores de radiación
- 3. Detectores de gas, detectores de centelleo, semiconductores, bolómetros y detectores híbridos
- 4. Espectroscopia de radiación.
- 5. Aplicaciones de sistemas de detección.
- 6. Procesado analógico de señales.
- 7. Procesado y conformación de pulsos: componentes básicos.
- 8. Ruido y dispositivos electrónicos.
- 9. Amplificadores y caracterización del ruido electrónico generado.
- 10. Efectos de la radiación en circuitos.
- 11. Sistemas de detección y medida.

4.4. Planificación de las actividades de aprendizaje y calendario de fechas clave

Calendario de sesiones presenciales y presentación de trabajos

Las fechas serán establecidas y anunciadas por los profesores al inicio del curso.

Las clases comenzarán y finalizarán en las fechas indicadas por la Facultad de Ciencias.

- Clases de teoría y problemas: 4 sesiones por semana. Fechas a decidir.
- Clases de laboratorio: serán anunciadas por los profesores al comienzo del curso.
- Sesiones de evaluación: fechas a decidir.

4.5.Bibliografía y recursos recomendados

LA BIBLIOGRAFÍA ACTUALIZADA DE LA ASIGNATURA SE CONSULTA A TRAVÉS DE LA PÁGINA WEB DE LA BIBLIOTECA http://biblos.unizar.es/br/br_citas.php?codigo=60040&year=2019