

Curso: 2019/20

29936 - Sistemas automáticos

Información del Plan Docente

Año académico: 2019/20

Asignatura: 29936 - Sistemas automáticos

Centro académico: 110 - Escuela de Ingeniería y Arquitectura

Titulación: 435 - Graduado en Ingeniería Química

Créditos: 6.0 Curso: 2

Periodo de impartición: Segundo semestre

Clase de asignatura: Obligatoria

Materia: ---

1.Información Básica

1.1. Objetivos de la asignatura

La asignatura y sus resultados previstos responden a los siguientes planteamientos y objetivos:

Los objetivos de la asignatura son de dos tipos:

- 1. **Teóricos**: Se persigue que el alumno conozca y maneje con soltura los contenidos teóricos básicos que sustentan el control automático de sistemas. Al finalizar la asignatura el alumno será capaz de:
 - Comprender el comportamiento de los sistemas discretos.
 - Comprender y modelar la dinámica de procesos del ámbito de la ingeniería química.
 - Identificar los subsistemas y sus interconexiones relevantes para automatizar el funcionamiento global del sistema.
 - Razonar de forma teórica sobre los elementos de control más adecuados y los efectos que producen en el sistema.
 - Seleccionar las técnicas más adecuadas de modelado, análisis y diseño en función de los requisitos del control.
- 2. **Prácticos**: Se persigue que el alumno sepa desenvolverse con soltura en un entorno real de control, aplicando y analizando el alcance práctico de los contenidos teóricos aprendidos. Al finalizar la asignatura el alumno será capaz de:
 - Identificar físicamente los distintos elementos de un sistema de control.
 - Programar controles sencillos de sistemas de eventos discretos mediante autómatas programables.
 - Experimentar con los sistemas a controlar y sus modelos.
 - Aplicar las técnicas y métodos para el diseño del sistema de control cumpliendo las especificaciones de funcionamiento.

1.2.Contexto y sentido de la asignatura en la titulación

Sistemas automáticos es una asignatura de la rama de tecnologías industriales. En este contexto se presentan los conceptos básicos del control de sistemas y su particularización a sistemas químicos. Los alumnos han cursado en semestres anteriores asignaturas de matemáticas, física, química y electrotecnia, necesarias para comprender algunos de los principios básicos utilizados en la asignatura. El alumno aprende en la asignatura a trabajar con sistemas de eventos discretos, a analizar el comportamiento transitorio y permanente de los sistemas químicos y a poder adaptarlo, según los requisitos deseados, mediante las estructuras de control adecuadas. Al finalizar la asignatura el alumno es capaz de comprender la transcendencia del control de sistemas y su importancia en los procesos industriales desde el punto de vista técnico, económico y ambiental.

1.3. Recomendaciones para cursar la asignatura

En esta asignatura se presentan conceptos de modelado y control automático de sistemas y procesos continuos. Es recomendable que el alumno esté familiarizado con las distintas herramientas de **matemáticas**, **física**, **química y teoría de circuitos** que facilitan una abstracción de la realidad. El uso de estas herramientas le permitirá construir modelos y sistemas de control que podrá simular y analizar mediante un **computador** y, en último término, implantar sobre el sistema real para conseguir un funcionamiento automático adecuado de éste.

2. Competencias y resultados de aprendizaje

2.1.Competencias

Al superar la asignatura, el estudiante será más competente para...

Competencias genéricas

- C04 Resolver problemas y tomar decisiones con iniciativa, creatividad y razonamiento crítico.
- C05 Aplicar las tecnologías de la información y las comunicaciones en la Ingeniería.
- C06 Capacidad para comunicar y transmitir conocimientos, habilidades y destrezas en castellano.
- C07 Usar las técnicas, habilidades y herramientas de la ingeniería necesarias para la práctica de la misma.

Competencias específicas

C23 - Aplicar los conocimientos sobre los fundamentos de automatismos y métodos de control.

2.2. Resultados de aprendizaje

El estudiante, para superar esta asignatura, deberá demostrar los siguientes resultados...

Identifica los subsistemas y sus interconexiones relevantes para automatizar el funcionamiento global del sistema.

Selecciona las técnicas más adecuadas de modelado, análisis y diseño en función de los requisitos del control.

Aplica las técnicas y métodos para el diseño del sistema de control cumpliendo las especificaciones de funcionamiento.

2.3.Importancia de los resultados de aprendizaje

Los resultados de aprendizaje de esta asignatura dotan al alumno de capacidad de análisis de situaciones reales de control de procesos industriales y le capacitan para proponer esquemas y calcular los parámetros de control adecuados que permitan cumplir con unos requisitos dados, así como para proponer soluciones de mejora y eficiencia en un control de procesos ya existente. Estos resultados, y las capacidades y habilidades de ellos derivadas, tienen una gran importancia en el entorno industrial, donde el control de procesos es una pieza clave y fundamental para el desarrollo del producto, permitiendo reducir costes, tanto económicos como ambientales, y aumentar la calidad final del producto.

3. Evaluación

3.1.Tipo de pruebas y su valor sobre la nota final y criterios de evaluación para cada prueba

El estudiante deberá demostrar que ha alcanzado los resultados de aprendizaje previstos mediante las siguientes actividades de evaluacion

De acuerdo con la normativa de la Universidad de Zaragoza la evaluación de esta asignatura es de tipo global.

Dada la relevancia que en la asignatura tiene la adquisición de competencias prácticas, mediante el uso de entornos informáticos y en el laboratorio, a lo largo del curso irá siendo evaluado dicho trabajo en cada sesión, en base al estudio previo, desarrollo del trabajo, elaboración de memorias, resolución de cuestiones, etc.

En cada convocatoria, la evaluación comprenderá dos partes:

- 1. **Prueba escrita individual** (70%). Calificada entre 0 y 10 puntos (CT). Se realizará en periodo de exámenes. En ella se evaluará al alumno del conjunto de resultados de aprendizaje desde el punto de vista teórico y de resolución de problemas.
- 2. **Evaluación del trabajo práctico** (30%). Calificada entre 0 y 10 puntos (CP), podrá superarse a lo largo del curso (periodo de clases). En cualquier caso se realizará una prueba individual específica durante el periodo de exámenes para los alumnos que no la hayan superado durante el curso, o que deseen subir nota. En ella se evaluará al alumno del conjunto de resultados de aprendizaje desde el punto de vista del trabajo práctico.

Para la superación de la asignatura es condición imprescindible obtener una calificación mayor o igual que 4 puntos tanto en CT como en CP. Sólo en ese caso, la calificación global de la asignatura será (0.30*CP+ 0.70*CT). En otro caso, la calificación global será la mínima entre 4 y el resultado de aplicar la fórmula anterior. La asignatura se supera con una calificación global de 5 puntos sobre 10.

4. Metodología, actividades de aprendizaje, programa y recursos

4.1. Presentación metodológica general

El proceso de aprendizaje que se ha diseñado para esta asignatura se basa en lo siguiente:

- 1. Clases magistrales por parte de los profesores.
- 2. Resolución de problemas planteados en clase y trabajos prácticos.
- 3. El desarrollo de prácticas por parte de los alumnos y tutoradas por los profesores. En ellas aplicarán, en un entorno simulado o real, sus conocimientos teóricos, enfrentándose a las limitaciones y condicionantes que son inherentes a los sistemas reales. Todo ello redundará en una mayor comprensión, profundización y asimilación de la parte teórica de la asignatura.
- Estudio personal por parte de los alumnos.

Se debe tener en cuenta que la asignatura tiene un fuerte soporte teórico y que adicionalmente el alumno ha de comprender y asimilar su importancia en el mundo de la aplicación industrial.

El proceso de aprendizaje pone énfasis en:

- 1. La asistencia del alumno a las clases magistrales.
- 2. El estudio personal.
- 3. La realización de ejercicios y trabajos prácticos.
- 4. La realización de prácticas en laboratorio.

4.2. Actividades de aprendizaje

El programa que se ofrece al estudiante para ayudarle a lograr los resultados previstos comprende las siguientes actividades...

Clases magistrales con exposición de contenidos teóricos. Los contenidos que se desarrollan son los siguientes:

BLOQUE 1.- Comportamiento dinámico de sistemas continuos.

- Modelado de sistemas continuos.
- Análisis temporal de sistemas continuos.
- Análisis frecuencial de sistemas continuos.

BLOQUE 2.- Sistemas de control realimentados.

- Sistemas Realimentados.
- Control de Sistemas Continuos.

BLOQUE 3. - Automatismos lógicos.

Control de Sistemas de eventos discretos.

Realización de ejercicios seleccionados entre una colección suministrada para el trabajo del alumno.

Realización de prácticas de laboratorio. Para la realización de las prácticas se dispone de los siguientes laboratorios:

- Laboratorio con computadores para la realización de simulaciones.
- Laboratorio con maqueta de sistema continuo. Control del proceso mediante autómata programable (función PID integrada) y mediante controladores industriales.
- Laboratorio con maqueta de sistema discreto. Control mediante autómatas programables.

4.3.Programa

La asignatura se descompone en 4 grandes bloques:

Bloque 1. Modelado de sistemas continuos

Modelado empírico y axiomático

Modelado de sistemas térmicos mediante ecuaciones diferenciales y transformada de Laplace

Función de transferencia

Modelado mediante diagramas de bloques

Bloque 2. Análisis de sistemas continuos

Comportamiento dinámico de sistemas de primer y segundo orden

Comportamiento dinámico de sistemas de orden superior

Análisis de sistemas realimentados

Bloque 3. Control de sistemas continuos

Comportamiento de sistemas realimentados mediante el lugar de las raíces

Controladores PID

Diseño de reguladores mediante el lugar de las raíces

Implementación de controladores en un computador

Bloque 4. Control de sistemas de eventos discretos

Definición de automatismo lógico

Control de automatismos con PLCs

Modelado de SED usando redes de Petri

4.4. Planificación de las actividades de aprendizaje y calendario de fechas clave

Calendario de sesiones presenciales y presentación de trabajos

El calendario de la asignatura para sesiones presenciales de clases y prácticas está fijado por el Centro.

Las demás actividades relacionadas con el aprendizaje que se pueden realizar durante el curso se anunciarán con la adecuada antelación.

El calendario académico de las actividades a desarrollar en la asignatura se podrá consultar en la web del centro. El estudiante debe estar atento a las fechas detalladas de realización de prácticas y entrega de trabajos de las que será convenientemente informado tanto en clase como a través del Anillo Digital Docente.

4.5.Bibliografía y recursos recomendados

http://biblos.unizar.es/br/br_citas.php?codigo=29936&year=2019