

Curso: 2019/20

26906 - Laboratorio de física

Información del Plan Docente

Año académico: 2019/20

Asignatura: 26906 - Laboratorio de física Centro académico: 100 - Facultad de Ciencias

Titulación: 447 - Graduado en Física

Créditos: 6.0 Curso: 1

Periodo de impartición: Segundo semestre Clase de asignatura: Formación básica

Materia: Física

1.Información Básica

1.1. Objetivos de la asignatura

La asignatura y sus resultados previstos responden a los siguientes planteamientos y objetivos:

El objetivo de la asignatura es introducir al alumno en el trabajo experimental y el método científico. Asimismo las experiencias a realizar en el laboratorio servirán para ejemplificar los conceptos y leyes estudiados en las asignaturas de Fundamentos de Física. La asignatura está incluida en un módulo BÁSICO donde los objetivos son proporcionar al alumno una formación básica y homogénea en aspectos generales de la Física. Los objetivos se comparten con las asignaturas de ?Fundamentos de física I? y ?Fundamentos de física II?

Objetivos Generales:

- O1. Obtención de conocimientos básicos de física experimental.
- **O2.** Adquisición de la destreza necesaria en la manipulación del instrumental del laboratorio para la medida de magnitudes físicas.
- O3. Determinación de errores, manejo de unidades y procesado de datos experimentales.

1.2.Contexto y sentido de la asignatura en la titulación

Esta asignatura se enmarca en el módulo BÁSICO del grado de Física y constituye junto con Fundamentos de física I y Fundamentos de física II el subgrupo de asignaturas de contenidos relacionados específicamente con la Física.

1.3. Recomendaciones para cursar la asignatura

Se recomienda estar cursando o haber superado las asignaturas de Fundamentos de Física I y II

2. Competencias y resultados de aprendizaje

2.1.Competencias

Al superar la asignatura, el estudiante será más competente para...

Utilizar la notación básica y el lenguaje empleados en Física

Conocer las leyes fundamentales de la Física y aplicarlas en las situaciones adecuadas

Distinguir entre magnitudes físicas medibles y magnitudes físicas derivadas

Verificar un montaje experimental y el modo de operación de los diferentes instrumentos requeridos

Realizar adecuadamente la toma de datos en experimentos básicos de mecánica, ondas, termodinámica, electromagnetismo, óptica y física moderna

Calcular parámetros estadísticos básicos de un conjunto de medidas

Tratar adecuadamente los distintos tipos de errores que afectan a una medida experimental

Interpretar los resultados obtenidos en el contexto del proceso de medida seguido

Elaborar un informe de un trabajo experimental con objetivos y conclusiones claramente enunciados. Ser riguroso en la representación gráfica, utilización de unidades, incertidumbres y cifras significativas

2.2.Resultados de aprendizaje

El estudiante, para superar esta asignatura, deberá demostrar los siguientes resultados...

Informes de las diferentes experiencias realizadas en el laboratorio

Exposición clara del proceso de medida y resultados conseguidos de una de las experiencias realizadas

2.3.Importancia de los resultados de aprendizaje

La asignatura de Laboratorio de Física representa el primer contacto de los alumnos con el trabajo experimental en el laboratorio, el manejo de instrumentación científica y la medida de magnitudes físicas y, por tanto, constituye la base de las demás asignaturas experimentales Técnicas Físicas I, II y III.

3. Evaluación

3.1. Tipo de pruebas y su valor sobre la nota final y criterios de evaluación para cada prueba

El estudiante deberá demostrar que ha alcanzado los resultados de aprendizaje previstos mediante las siguientes actividades de evaluacion

Opción A. Evaluación progresiva del aprendizaje.

Esta opción consiste, por una parte, en la evaluación del trabajo del alumno en el laboratorio mediante la corrección de los informes presentados para cada una de las sesiones de laboratorio y la evaluación de la exposición oral (actividad formativa 3) y en la realización de una prueba práctica final en el laboratorio, por otra. La evaluación del trabajo del alumno en el laboratorio contribuye un 60% (la evaluación de los informes un 50% y la exposición oral un 10%) a la calificación global y la prueba práctica en el laboratorio el otro 40%. Para superar la asignatura, el alumno deberá de obtener una calificación mínima de 3.0 en la prueba práctica, ya que lo contrario significaría que las competencias no se han adquirido de forma homogénea y global.

Opción B. Evaluación mediante una prueba teórico-práctica única.

En esta opción, la evaluación de la adquisición de las competencias se realiza mediante una prueba teórico práctica única en el laboratorio, una vez concluido el periodo de evaluación progresiva. Se realiza en las fechas establecidas por la Facultad para tal fin. Esta opción es una exigencia de la legalidad existente en la Universidad de Zaragoza, y representa una opción para los que, por la razón que sea, no puedan asistir a la realización de las prácticas o puedan suponer que ya disponen de las competencias a adquirir en la asignatura.

4. Metodología, actividades de aprendizaje, programa y recursos

4.1. Presentación metodológica general

El proceso de aprendizaje que se ha diseñado para esta asignatura se basa en lo siguiente:

Contenidos

- ? Introducción al tratamiento de datos experimentales: error sistemático y aleatorio, precisión, estimadores, distribución gaussiana, propagación de errores, ajustes por mínimos cuadrados.
- ? Realización de prácticas de laboratorio relacionadas con los contenidos de Fundamentos de Física, tales como determinación de magnitudes dinámicas, propiedades de oscilaciones mecánicas, propiedades mecánicas y térmicas de materiales, sistemas termodinámicos, mecánica de fluidos, medida de magnitudes eléctricas, campos eléctricos y magnéticos, velocidad de ondas, ondas estacionarias, propiedades básicas de la luz, medida de constantes fundamentales.

4.2. Actividades de aprendizaje

El programa que se ofrece al estudiante para ayudarle a lograr los resultados previstos comprende las siguientes actividades...

Actividad Formativa 1: Adquisición de conocimientos básicos sobre tratamiento de datos: errores, estimadores, etc. (1 ECTS)

Metodología:

- Clase magistral participativa.
- Resolución de problemas y casos en grupo reducido.
- Aplicación al trabajo de laboratorio.

Programa de clases teóricas:

- 1. Tratamiento de errores
- 2. Distribuciones estadísitcas
- 3. Propagación de errores
- 4. Ajustes por mínimos cuadrados

Actividad Formativa 2: Realización de experiencias de laboratorio en grupos reducidos (4,5 ECTS)

Metodología:

- Trabajo en el laboratorio.

- Explicación del trabajo a realizar en grupos pequeños.
- Trabajo en equipo para la toma de datos experimentales
- Elaboración de informes.
- Tutorías en grupos reducidos para discutir el contenido de los informes presentados.

Programa de Prácticas:

- P1. Sólido rígido
- P2. Movimiento vibratorio
- P3. Propiedades mecánicas
- P4. Propiedades térmicas
- P5. Fluidos
- P6. Magnitudes eléctricas
- P7. Campos eléctricos y magnéticos
- P8. Luz y sonido
- P9. Constantes fundamentales
- P10. Ondas estacionarias y difracción
- P11. Propiedades básicas de la luz

Actividad Formativa 3: Exposición del trabajo realizado (0,5 ECTS)

Metodología:

- Exposición oral de uno de los informes realizados.

4.3.Programa

Programa de clases teóricas:

- 1. Tratamiento de errores
- 2. Distribuciones estadísitcas
- 3. Propagación de errores
- 4. Ajustes por mínimos cuadrados

Programa de Prácticas:

- P1. Sólido rígido
- P2. Movimiento vibratorio
- P3. Propiedades mecánicas
- P4. Propiedades térmicas
- P5. Fluidos
- P6. Magnitudes eléctricas
- P7. Campos eléctricos y magnéticos
- P8. Luz y sonido
- P9. Constantes fundamentales
- P10. Ondas estacionarias y difracción
- P11. Propiedades básicas de la luz

4.4. Planificación de las actividades de aprendizaje y calendario de fechas clave

Calendario de sesiones presenciales y presentación de trabajos

- Actividad formativa 1: 5 horas de clase magistral y 2 de resolución de problemas en grupo pequeño durante la semana del 13 al 17 de febrero.
- Actividad formativa 2: 11 prácticas en laboratorio. 4 horas presenciales por práctica-semana durante 11 semanas (semanas del 20 de febrero al 8 de junio). El alumno dispone de una semana de tiempo desde la realización de la práctica para presentar el informe escrito del mismo.
- Actividad formativa 3: Exposición oral del informe correspondiente a una de las prácticas (semana del 28 de mayo).
- Examen de prácticas: Se realizará a lo largo de una semana en sesiones de 2 horas por alumno, y siguiendo un esquema equivalente al desarrollo de una práctica. Semana del 11 de junio.
- Examen final de la asignatura (para alumnos no presenciales): Se realizará en la fecha indicada por la Facultad de Ciencias.

Se imparte en el segundo semestre del primer curso del grado en Física.

La evaluación progresiva se realiza a lo largo de todo el periodo de impartición.

4.5.Bibliografía y recursos recomendados