

Year: 2018/19

30235 - Commercial Processors

Syllabus Information

Academic Year: 2018/19

Subject: 30235 - Commercial Processors

Faculty / School: 110 -

Degree: 439 - Bachelor's Degree in Informatics Engineering

ECTS: 6.0

Year: 3

Semester: Indeterminate

Subject Type:

Module: ---

General information

Aims of the course

Context and importance of this course in the degree

Recommendations to take this course

Learning goals

Competences

Learning goals

Importance of learning goals

Assessment (1st and 2nd call)

Assessment tasks (description of tasks, marking system and assessment criteria)

Methodology, learning tasks, syllabus and resources

Methodological overview

Monitoring of learning activities for this subject.

Learning tasks

The program offered to help the student achieve the expected results includes the following activities:

- Class attendance
- Problem solving in small groups
- Performing assisted laboratory practices .
- Study and personal work, for which, in addition to the material used in the classroom and the laboratory
- Resolution of doubts through personal tutorials or in small groups
- Accomplishment of the corresponding evaluation tests

Syllabus

Introduction

Module 1: Processor organization

Review of Segmentation: exception Handling Multicycle operations. Out of order execution. Register renaming and memory dissambiguation.

Branch prediction Multithreading

Module 2: Memory hierarchy organization

Review: basic techniques for improving performance Advanced techniques for improving performance Segmented cache access Multiported caches

Non-blocking caches

Prefetching

Module 3: Instruction set architecture

Design Options

RISC example: general purpose SPARC CISC example: general purpose Intel

VLIW example: DSP TMS

Module 4: Compilation Stages of compilation

Register allocation and instruction scheduling

Optimization

Memory hierarchy oriented code optimization

Course planning and calendar

The course is organized in 2 hours of class and 1 hour of problems each week.

In addition, 6 sessions of practice of 2 hours each are performed.

The schedule will be implemented for each teaching group when the academic calendar of the University of Zaragoza is approved

Bibliography and recommended resources

[BB: Bibliografía básica / BC: Bibliografía complementaria]

- [BB] Baer, Jean-Loup. Microprocessor architecture : from simple pipelines to chip multiprocessor / Jean-Loup Baer . New York : Cambridge University Press, 2010
- [BB] González Colás, Antonio. Processor microarchitecture: an implementation perspective / Antonio González, Fernando Latorre and Grigorios Magklis. San Rafael: Morgan & Claypool, cop. 2011
- [BB] Hennessy, John L. Computer architecture: a quantitative approach / John Hennessy, David A. Patterson; with contributions by Andrea C. Arpaci-Dusseau ... [et al.] . 4th ed. San Francisco: Morgan Kaufmann, 2007
- [BB] Patterson, David A.. Estructura y diseño de computadores : la interfaz software/hardware / David A. Patterson, John L. Hennessy ; con contribuciones de Perry Alexander ... [et al. ; versión española por, Javier Díaz Bruguera] Barcelona : Reverté, D.L. 2011