30102 - Chemistry

Información del Plan Docente

Academic Year 2018/19

Subject 30102 - Chemistry

Faculty / School 175 - Escuela Universitaria Politécnica de La Almunia
179 - Centro Universitario de la Defensa - Zaragoza

Degree 457 - Bachelor's Degree in Industrial Organisational Engineering
563 - Bachelor's Degree in Industrial Organisational Engineering
425 - Bachelor's Degree in Industrial Organisational Engineering

ECTS 6.0

Year 1

Semester Half-yearly

Subject Type Basic Education

Module

1. General information

1.1. Aims of the course

1.2. Context and importance of this course in the degree

1.3. Recommendations to take this course

2. Learning goals

2.1. Competences

2.2. Learning goals

2.3. Importance of learning goals

3. Assessment (1st and 2nd call)

3.1. Assessment tasks (description of tasks, marking system and assessment criteria)

4. Methodology, learning tasks, syllabus and resources

4.1. Methodological overview

SPECIALIZATION IN BUSINESS

The organization of teaching will be carried out using the following steps:
- **Theory Classes**: Theoretical activities carried out mainly through exposition by the teacher, where the theoretical supports of the subject are displayed, highlighting the fundamental, structuring them in topics and or sections, interrelating them.

- **Practical Classes**: The teacher resolves practical problems or cases for demonstrative purposes. This type of teaching complements the theory shown in the lectures with practical aspects.

- **Laboratory Workshop**: The lecture group is divided up into various groups, according to the number of registered students, but never with more than 16 students, in order to make up smaller sized groups.

- **Individual Tutorials**: Those carried out giving individual, personalized attention with a teacher from the department. Said tutorials may be in person or online.

DEFENCE

In order to get the objectives described in the previous sections the following learning activities will be carried out: lectures, practical and problem solving sessions, laboratory sessions.

4.2.**Learning tasks**

SPECIALIZATION IN BUSINESS

The subject has 6 ECTS credits, which represents 150 hours of student work in the subject during the trimester, in other words, 10 hours per week for 15 weeks of class.

A summary of a weekly timetable guide can be seen in the following table. These figures are obtained from the subject file in the Accreditation Report of the degree, taking into account the level of experimentation considered for the said subject is moderate.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Weekly school hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures</td>
<td>2</td>
</tr>
<tr>
<td>Laboratory Workshop</td>
<td>2</td>
</tr>
<tr>
<td>Other Activities</td>
<td>6</td>
</tr>
</tbody>
</table>
DEFENCE

1. lectures,
2. practical and problem solving sessions,
3. laboratory sessions.

4.3. Syllabus

SPECIALIZATION IN BUSINESS

THEORETICAL CONTENTS

<table>
<thead>
<tr>
<th>Module</th>
<th>Contents</th>
</tr>
</thead>
</table>

Topic 2.- *General overview of the periodic table*
Description of the current periodic table: groups and periods. Study of the electron shell and the periodic system. Periodic properties. |
| 2. THE CHEMICAL BOND | Topic 3.- The ionic bond
General characteristics of the ionic bond. Network energy. General properties of ionic compounds.
Topic 4.- The covalent bond
Topic 5.- The metallic bond
|---|---|
| 3. BONDS BETWEEN MOLECULES | Topic 6.- Intermolecular bonds
Van der Waal forces. Hydrogen bonds. |
| 4. AGGREGATION STATES | Topic 7.- The gas state
Topic 8.- The liquid state |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Topic 9.- The solid state</td>
<td>Characteristics of solids. Classes of crystal network. Classes of solids based on bonding type. The phase rule and the triple point.</td>
</tr>
<tr>
<td>6. INTRODUCTION TO THE STUDY OF REACTIONS</td>
<td>Topic 10.- Introduction to the study of solutions</td>
</tr>
</tbody>
</table>
7. ORGANIC CHEMISTRY

Topic 13 - Organic chemistry

The properties of carbon. Types of organic substances Isomers. Organic chemical reactions. Polymers

PRACTICAL CONTENTS

<table>
<thead>
<tr>
<th>Practical</th>
<th>Standards in Chemical Laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practical 1</td>
<td>Techniques, Equipment and Safety</td>
</tr>
<tr>
<td>Practical 2</td>
<td>Solution Preparation</td>
</tr>
<tr>
<td>Practical 3</td>
<td>Filtration</td>
</tr>
<tr>
<td>Practical 4</td>
<td>Volumetric Analysis</td>
</tr>
</tbody>
</table>

- **Practical 1**
 - Standards in Chemical Laboratory
 - Techniques, Equipment and Safety

- **Practical 2**
 - Solution Preparation
 - \(\text{Na}_2\text{CO}_3 0.1 \text{ M from Na}_2\text{CO}_3 \text{ solid; CaCl}_2 0.1 \text{ M from CaCl}_2 2 \text{ M} \)

- **Practical 3**
 - Filtration
 - \(\text{Gravity Filtration and Vacuum Filtration} \)

- **Practical 4**
 - Volumetric Analysis
 - Water hardness; carbonates and bicarbonates in water.
DEFENCE

Contents

Unit 1. Chemistry and matter
 1.1. Basic concepts
 1.2. Fundamental laws of chemical reactions. Atoms
 1.3. Compounds and chemical formula
 1.4. Composition of compounds
 1.5. Mixtures, solutions and solubility
Unit 2. Chemical reactions and stoichiometry
 2.1. Chemical reaction and chemical equation
 2.2. Stoichiometry of chemical reactions
 2.3. Gases
 2.3. Aqueous reactions
Unit 3. Chemical equilibrium
 3.1. Basic concepts
 3.2. Equilibrium constant and chemical equation
 3.3. Numerical importance of the equilibrium constant
 3.4. The reaction quotient, Q
 3.5. Le Chatelier's principle
 3.6. Acid-base equilibria and the pH scale
Lab. session 1: Solutions and titration
Unit 4. Energy and Chemistry
 4.1. Basic concepts
 4.2. The First Law of Thermodynamics: heat, work and enthalpy
 4.3. Spontaneous processes
 4.4. Entropy.
Unit 5. Chemical kinetics
 5.1. Reaction rates
 5.2. Concentration and reaction rate
 5.3. Rate laws
 5.4. The change of concentration with time.
 5.5. Temperature and reaction rate
 5.6. Reaction mechanisms
 5.7. Catalysis
Lab. session 2: The aluminothermic reaction
Unit 6. Atomic models
 6.1. From classical physics to quantum mechanics
6.2. Line spectra and the Bohr model
6.3. The wave behaviour of matter
6.4. Quantum mechanics and atomic orbitals
6.5. Many-electron atoms
6.6. Electronic configurations and the Periodic Table
6.7. Periodic properties
Unit 7. Chemical bond I
7.1. Chemical bonds, Lewis symbols and the octet rule
7.2. Ionic bonding
7.3. Covalent bonding
7.4. Strength of covalent bonds
Unit 8. Chemical bond II
8.1. The VSEPR model
8.2. Molecular polarity
8.3. Molecular-orbital model
8.4. Molecular-orbital model for metals
Unit 9. Intermolecular forces and liquids
9.1. Intermolecular forces
9.2. Solubility and the solution process
9.3. Phases, phase changes and phase diagrams
9.4. Liquids: boiling point, vapor pressure, surface tension, viscosity
Unit 10. Solids
10.1. Amorphous solids and the short-range order. Glass transition temperature
10.2. Crystalline solids, the long-range order and the unit cell
10.3. Bonding in solids
Unit 11. Materials
11.1. Materials science and classes of materials
11.2. Ceramics
11.3. Polymers
11.4. Alloys
11.5. Semiconductors

4.4. Course planning and calendar

SPECIALIZATION IN BUSINESS

<table>
<thead>
<tr>
<th>SECTION</th>
<th>Topic</th>
<th>Nº hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 y 1</td>
<td>Presentation. Atom (Topic 1) and the Periodic System (Topic 2)</td>
<td>10</td>
</tr>
<tr>
<td>2 y 3</td>
<td>The Chemical Bond (Topics 3, 4 y 5) and Intermolecular Bonds (Topic 6)</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>Aggregation States (Topics 7, 8 y 9)</td>
<td>6</td>
</tr>
</tbody>
</table>
The dates of the final exams will be those that are officially published at http://www.eupla.unizar.es/asuntos-academicos/examenes

DEFENCE

Before the start of the semester the course additional information will be published in the Moodle platform, which can be consulted at http://moodle.unizar.es after authentication with the student's username and password.

This information will include the course planning, materials, bibliography and other recommendations to follow the course.

Information about general course calendars and timetables can also be found at the website of the Centro Universitario de la Defensa: http://cud.unizar.es

4.5. Bibliography and recommended resources