

#### Información del Plan Docente

Academic Year 2018/19

**Subject** 29814 - Signals and systems

Faculty / School 110 - Escuela de Ingeniería y Arquitectura

326 - Escuela Universitaria Politécnica de Teruel

**Degree** 440 - Bachelor's Degree in Electronic and Automatic Engineering

444 - Bachelor's Degree in Electronic and Automatic Engineering

**ECTS** 6.0

Year 2

Semester First semester

Subject Type Compulsory

Module ---

- 1.General information
- 1.1.Aims of the course
- 1.2. Context and importance of this course in the degree
- 1.3. Recommendations to take this course
- 2.Learning goals
- 2.1.Competences
- 2.2.Learning goals
- 2.3.Importance of learning goals
- 3.Assessment (1st and 2nd call)
- 3.1. Assessment tasks (description of tasks, marking system and assessment criteria)
- 4. Methodology, learning tasks, syllabus and resources
- 4.1. Methodological overview

At the EINA (ZARAGOZA)

The course will be based on combining theoretical explanations with practical exercises, written assignments and laboratory work.

1. Lectures will provide theoretical background on Signal and Systems fundamentals



- 2. Case studies and problem solving will be worked out at the classroom
- 3. The students will do laboratory work in small groups
- 4. Written assignments will be proposed

Student participation is considered very important in order to acquire the learning outcomes and skills needed.

#### At the EUPT (TERUEL)

#### The learning process is based on:

- 1. Lectures and theory sessions given to the whole group of students enrolled in the course. Lectures will explain the basic principles of the subject. A selection of problems will be solved at the end of each chapter.
- 2. Laboratory sessions every 2 weeks.
- 3. Supervised assignments (approximately every 2 weeks).
- 4. Individual work.

## 4.2.Learning tasks

The guidelines designed in order to help students to reach the expected learning results include the following activities ...

### At the EINA (ZARAGOZA)

#### Classroom activities 6 ECTS (60 hours)

- 1) Lectures (T1) (30 hours): Fundamentals of systems modelling and analysis, mixing theoretical concepts and practical applications.
- 2) Case studies (T2) (15 hours): Examples and practical case studies with active participation of students.
- **3) Lab sessions (T3)** (15 hours): Five laboratory sessions related to system identification and simulation and signal analysis. Students have to prepare sessions in advance. This previous work will be evaluated in the laboratory.

## Personal work: 3.6 ECTS (90 hours)

- **4)** Assignments (T6) (10 hours): Assignments for groups of two students related to modelling and simulation of a continuous system will be proposed
- **5) Personal study (T7)** (76 hours): Continuous study will be promoted among students. They can also attend tutorials to solve the specific problems they can face in the course
- 6) Evaluation activities (T8) (4 hours): Assessment will be based on coursework (laboratory work and assignments) and



| final examination                                                         |
|---------------------------------------------------------------------------|
| At the EUPT (TERUEL)                                                      |
| 1. Lectures and theory sessions (30 hours, in classroom)                  |
| 2. Solving selected exercises and problems (15 hours, in classroom)       |
| 3. Lab sessions (14 hours, in laboratory)                                 |
| 4. Individual work (58 non-presential hours)                              |
| 5. Lecturer-student sessions (in lecturer's office)                       |
| 6. Evaluation / assessment (5 hours, in classroom)                        |
| 7. Supervised assignments (28 hours; 14 in classroom + 14 non-presential) |
| 4.3.Syllabus                                                              |
| Continuous-time systems modeling.                                         |
| 1.1 Representation of continuous-time signals.                            |
| 1.2 Modeling tools.                                                       |
| 1.3 Physical systems modeling.                                            |
|                                                                           |
| Time-domain analysis of continuous-time systems.                          |
| 2.1. Time-domain response of linear systems.                              |
| 2.2. Stability                                                            |
|                                                                           |



|            | •             | •                 |    | Ü | • |  |  |
|------------|---------------|-------------------|----|---|---|--|--|
| 3.1. Fouri | er Transform. |                   |    |   |   |  |  |
| 3.2. Frequ | uency-domain  | transfer functior | ٦. |   |   |  |  |

3.3. Bode and polar plots.

- 4. Discrete-event systems modeling and simulation.
- 4.1. Discrete-event systems. State diagrams.
- 4.2. Petri networks.
- 4.3. Qualitative and quantitative properties. Analysis based on examples.

3. Frequency-domain analysis of continuous-time signals and systems.

4.4. Discrete-event and hybrid systems simulation.

### 4.4.Course planning and calendar

Classroom and laboratory sessions take place according to the general schedule set by faculty board. Timetables will be published prior to the beginning of the course at the web of the EINA <a href="https://eina.unizar.es/">https://eina.unizar.es/</a> and EUPT <a href="https://eupt.unizar.es/">https://eupt.unizar.es/</a>

Each teacher will publish his tutoring hours. All the other activities will be planned and announced well in advance. It will be available at <a href="https://moodle2.unizar.es/add/">https://moodle2.unizar.es/add/</a>

## 4.5. Bibliography and recommended resources