

Información del Plan Docente

Año académico 2018/19

Asignatura 28717 - Ampliación de ingeniería hidráulica e hidrología

Centro académico 175 - Escuela Universitaria Politécnica de La Almunia

Titulación 423 - Graduado en Ingeniería Civil

Créditos 6.0

Curso 2

Periodo de impartición Segundo Semestre

Clase de asignatura Obligatoria

Módulo ---

1.Información Básica

1.1. Objetivos de la asignatura

El principal objetivo de la asignatura es conseguir que los alumnos adquieran conocimiento sobre los conceptos y los aspectos técnicos vinculados a los sistemas de conducciones en lámina libre y de los conceptos básicos de hidrología superficial y subterránea.

1.2.Contexto y sentido de la asignatura en la titulación

La asignatura de "Ampliación de Ingeniería Hidráulica e Hidrología" está situada en el actual Plan de Estudio de Ingeniería Civil de la EUPLA. Se trata de una asignatura semestral, de segundo curso, y tiene una carga de 6 créditos ECTS. Es una asignatura de carácter obligatorio y, al pertenecer a la rama de formación común a la ingeniería civil, deberá ser cursadas por todos los alumnos independientemente del recorrido formativo elegido (en el caso de la EUPLA, el grado en ingeniería civil propone 3 diferentes menciones: Construcciones Civiles, Hidrología, Transportes y Servicios Urbanos).

La asignatura de "Ampliación de Ingeniería Hidráulica e Hidrología", junto con la asignatura de "Fundamentos de Ingeniería Hidráulica", debe desarrollar los contenidos de la materia de "Ingeniería hidráulica e hidrología", en donde el objetivo principal es proporcionar una formación sólida a partir de conceptos de hidráulica e hidrología fundamentales, iniciar en el conocimiento de las leyes que rigen los medios fluidos y plantear, con ayuda de las mismas, soluciones técnicas a problemas reales.

Se dejan para otras asignaturas de especialidad, las cuales se servirán del soporte previo del conocimiento otorgado por la materia de "Ingeniería Hidráulica e Hidrología", el desarrollo de temas más específicos y concretos, objeto de análisis en otras asignaturas del grado en Ingeniería Civil de la EUPLA como "Sistemas de abastecimiento y saneamiento en la ingeniería de la construcción", "Ampliación de hidrología superficial", "Ampliación de hidrología subterránea", "Recursos hídricos", "Ingeniería Fluvial", "Obras hidráulicas y aprovechamiento hidroeléctrico", etc.

1.3. Recomendaciones para cursar la asignatura

La asignatura de "Ampliación de Ingeniería Hidráulica e Hidrología" no tiene requisitos previos obligatorios, aunque se aconseja a los alumnos haber aprobado las asignaturas de "Matemática Aplicada a la Ingeniería I", "Matemática Aplicada

a la Ingeniería II", "Física General" y "Fundamentos de Ingeniería Hidráulica" del Plan de estudio del Grado en Ingeniería Civil.

2. Competencias y resultados de aprendizaje

2.1.Competencias

Tal y como se recoge en la competencia obligatoria de Formación Común C07 de la Memoria de Grado en Ingeniería Civil de la EUPLA, la principal competencia de esta asignatura será la de adquirir el conocimiento de los conceptos y los aspectos técnicos vinculados a los sistemas de conducciones en lamina libre.

Además, como competencias genéricas, el alumno adquirirá:

- G01. Capacidad de organización y planificación.
- G02. Capacidad para la resolución de problemas.
- G03. Capacidad para tomar decisiones.
- G04. Aptitud para la comunicación oral y escrita de la lengua nativa
- G05. Capacidad de análisis y síntesis
- G06. Capacidad de gestión de la información
- G07. Capacidad para trabajar en equipo
- G08. Capacidad para el razonamiento crítico
- G09. Capacidad para trabajar en un equipo de carácter interdisciplinar
- G10. Capacidad de trabajar en un contexto internacional
- G11. Capacidad de improvisación y adaptación para enfrentarse a nuevas situaciones
- G12. Aptitud de liderazgo
- G13. Actitud social positiva frente a las innovaciones sociales y tecnológicas
- G14. Capacidad de razonamiento, discusión y exposición de ideas propias
- G15. Capacidad de comunicación a través de la palabra y de la imagen

- G16. Capacidad de búsqueda, análisis y selección de la información
- G17. Capacidad para el aprendizaje autónomo.
- G18. Poseer y comprender conocimientos en un área de estudio que parte de la base de la educación secundaria general, y se suele encontrar a un nivel, que si bien se apoya en libros de texto avanzados, incluye también algunos aspectos que implican conocimientos procedentes de la vanguardia de su campo de estudio.
- G19. Aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y resolución de problemas dentro de su área de estudio.
- G20. Capacidad de reunir e interpretar datos relevantes (normalmente dentro de su área de estudio) para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética.
- G21. Transmitir información, ideas, problemas y soluciones a un público tanto especializado como no especializado.
- G22. Desarrollar aquellas habilidades de aprendizaje necesarias para emprender estudios posteriores con un alto grado de autonomía.
- G23. Conocer y comprender el respeto a los derechos fundamentales, a la igualdad de oportunidades entre mujeres y hombres, la accesibilidad universal para personas con discapacidad, y el respeto a los valores propios de la cultura de la paz y los valores democráticos.
- G24. Fomentar el emprendimiento.
- G25. Conocimientos en tecnologías de la información y la comunicación.

2.2. Resultados de aprendizaje

El estudiante, para superar esta asignatura, deberá demostrar haber adquirido los siguientes resultados de aprendizaje:

- Dominio de las leyes generales de los fluidos en movimiento y de los aspectos técnicos vinculados a los sistemas de conducciones en lámina libre.
- Conocimientos generales sobre la hidrología superficial.
- Conocimientos generales sobre la hidrología subterránea.

2.3.Importancia de los resultados de aprendizaje

La asignatura de "Ampliación de Ingeniería Hidráulica e Hidrología" tiene un marcado carácter ingenieril, es decir, ofrece una formación con contenidos de aplicación y desarrollo inmediato en el mercado laboral y profesional. En particular, al finalizar y aprobar esta asignatura, el alumno adquirirá:

- Conocimientos de las leyes generales de los fluidos en movimiento y de los aspectos técnicos vinculados a los sistemas de conducciones en lámina libre.
- Conocimiento para el cálculo detallado del trazado vertical de la superficie libre de un canal, o perfil de flujo.
- Conocimientos básicos sobre el ciclo hidrológico, los conceptos de precipitación, pérdidas hidrológicas y estimación del caudal máximo a través del método racional.

• Conocimientos básicos sobre las leyes del flujo en medio poroso.

3. Evaluación

3.1. Tipo de pruebas y su valor sobre la nota final y criterios de evaluación para cada prueba

La evaluación es elemento básico en todo el proceso de enseñanza-aprendizaje, puesto que es el único mecanismo que permite, en cualquier momento de un período educativo, detectar el grado de consecución de los resultados de aprendizaje propuestos y, si procede, aplicar las correcciones precisas.

Al comienzo de la asignatura el alumno elegirá una de las dos siguientes metodologías de evaluación:

- Sistema de evaluación continua: se trata de un sistema de evaluación caracterizado por la obligatoriedad de participar a las actividades presenciales de la asignatura y realizar y superar las pruebas prácticas, exámenes parciales y trabajos académicos propuestos en la misma, dentro de los plazos establecidos para este fin. En este caso, el alumno no tendrá que presentarse a un examen global.
- Prueba global de evaluación final: se trata de un examen final y global sobre todo el contenido teórico y práctico de la asignatura.

Sistema de evaluación continua

Siguiendo el espíritu del nuevo Espacio Europeo de Educación Superior (conocido como plan de reforma de Bolonia) en cuanto al grado de implicación y trabajo continuado del alumno a lo largo del curso, la evaluación de la asignatura contempla el sistema de evaluación continua como el más acorde para estar en consonancia con las directrices marcadas por este nuevo marco.

En el modelo de evaluación continua el profesor evaluará la participación del alumno en las actividades presenciales y la habilidad en la resolución de problemas que el profesor proporcionará con las prácticas. Por último, el alumno deberá realizar y superar dos pruebas escritas parciales ("exámenes de evaluación continua") a lo largo de la asignatura.

La siguiente tabla resume los pesos de las actividades citadas en el proceso de evaluación. Todo alumno que no asista a un mínimo del 80% de las actividades presenciales (clases, seminarios, visitas técnicas, prácticas de laboratorio, etc.) o que no supere los mínimos necesarios exigidos para las pruebas parciales, prácticas, exámenes o trabajos académicos propuestos en la asignatura, pasará automáticamente al modelo de evaluación global.

Actividad de evaluación	Ponderación
Participación actividades presenciales	2.5%
Prácticas	5%
I Examen de evaluación continua	70%
Il Examen de evaluación continua	22.5%

Prueba global de evaluación final

El alumno deberá optar por esta modalidad cuando, por su coyuntura personal, no pueda adaptarse al ritmo de trabajo requerido en el modo de evaluación continua. En este caso, la evaluación consta de una prueba única sobre teoría, problemas y prácticas de laboratorio. La nota final de la prueba de evaluación final será:

Nota: MAX (92.5% · Nota Examen + 5% · Nota práctica + Nota actividades presenciales ; Nota Examen)

4. Metodología, actividades de aprendizaje, programa y recursos

4.1. Presentación metodológica general

La metodología docente de la asignatura de "Ampliación de Ingeniería Hidráulica e Hidrología" se basa en una fuerte interacción profesor/alumno. Esta interacción se materializa por medio de un reparto de trabajo/responsabilidades entre alumnado y profesores. En particular, la metodología docente de esta asignatura se basa en una serie de actividades organizadas y dirigidas desde el profesor hacia el alumno y de carácter presencial, en las cuales se impartirán los conceptos básicos que el alumno consolidará mediante la realización de prácticas tutorizadas, también de carácter presencial. Además, en las sesiones prácticas se propondrán actividades autónomas para que el alumno aborde su resolución de manera no dirigida, cuya resolución podrá tener lugar durante tutorías personalizadas o de grupo.

4.2. Actividades de aprendizaje

El programa de actividades que se ofrece al estudiante para ayudarle a lograr los resultados de aprendizaje previstos implica la participación activa del alumnado, de tal manera que, para la consecución de los resultados de aprendizaje, se desarrollarán, sin ánimo de redundar en lo anteriormente expuesto, las actividades siguientes:

- Clases expositivas: Son clases sobre argumentos teóricos o sobre resolución de problemas impartidas de forma fundamentalmente expositiva por parte del profesor.
- Seminarios/talleres: Actividades de discusión teórica o preferentemente prácticas realizadas en aula o en otros foros por parte de profesores visitantes o en general ponentes no perteneciente al cuadro de profesores de la asignatura
- Prácticas de laboratorio: Actividades prácticas realizadas en los laboratorios bajo tutoría del profesorado de la asignatura, a las cuales seguirán actividades autónomas por parte de los alumnos
- Visitas: Visitas didácticas (guiadas por el profesorado de la asignatura) relacionadas a los temas desarrollados a lo largo de la asignatura
- Tutorías individuales: podrán ser presenciales o virtuales a través del portal virtual de enseñanza (Moodle) o del correo electrónico de la Universidad de Zaragoza
- Tutorías grupales: Actividades enfocadas al aprendizaje por parte del alumnado desarrolladas por el profesor que se reúne con un grupo de estudiantes para resolver dudas de grupo o desarrollar resoluciones de exámenes o de problemas de interés común

La asignatura consta de 6 créditos ECTS, lo cual representa 150 horas de trabajo del alumno en la asignatura durante el semestre. El 40% de este trabajo (60 h.) se realizará en el aula, y el resto será autónomo. Un semestre constará de 15 semanas lectivas. Para realizar la distribución temporal se utiliza como medida la semana lectiva, en la cual el alumno debe dedicar al estudio de la asignatura 10 horas.

Un resumen de la distribución temporal aproximada de una semana lectiva puede verse en la tabla siguiente. Estos valores se obtienen de la ficha de la asignatura de la Memoria de Verificación del título de grado.

Actividad	Horas semana lectiva
-----------	----------------------

Clases sobre argumentos teóricos	2-3 horas
Clases sobre resolución de problemas y prácticas	2-1 horas
Actividades autónomas	6 horas

4.3.Programa

Contenidos de la asignaturas indispensables para la obtención de los resultados de aprendizaje

Las pautas seguidas para elaborar los contenidos han sido las siguientes:

- Se respetaron los contenidos propuestos en la memoria de verificación.
- Se desarrolló un temario cuyos capítulos concuerdan en general con los títulos de los apuntes de curso que se proporcionarán a los alumnos.

El programa de la asignatura se estructura en torno a dos componentes de contenidos complementarios:

- · Temas teóricos
- · Problemas y prácticas

Contenidos teóricos

La elección del contenido de las diferentes unidades didácticas se ha realizado buscando la clarificación expresa del objetivo terminal de modo que, con la unión de conocimientos incidentes, el alumno obtenga un conocimiento estructurado y asimilable con facilidad para los Ingenieros Civiles.

Los contenidos teóricos se articulan en base a cinco unidades didácticas indicadas en la tabla a continuación que constituyen bloques indivisibles de tratamiento, dada la configuración de la asignatura que se programa. Dichos temas recogen los contenidos necesarios para la adquisición de los resultados de aprendizaje predeterminados.

	Flujo en lámina libre
Tema 1	Definición del flujo en lámina libre, canales y parámetros característicos del flujo en lámina libre, clasificación del flujo en lámina libre, Ecuaciones del flujo en lámina libre, hipótesis previas a la deducción de las ecuaciones de Saint Venant, Ecuación de continuidad, ecuación de conservación de la cantidad de movimiento, Número de Froude, Simplificaciones de las ecuaciones de Saint Venant, Régimen permanente gradualmente variado (RPGV), régimen permanente uniforme (RPU), Energía específica, Calado crítico, Energía crítica y

	calado crítico en un canal rectangular, Calado normal, Fórmula de Manning en canales sencillos y canales compuestos, Eficiencia de una sección, Curvas de capacidad de secciones simples para RPU, Curvas de remanso para RPGV, Integración numérica de la ecuación del RPGV, Cambios de régimen, Teoría del resalto hidráulico, fórmulas práctica para resaltos, Resaltos en canales rectangulares, Tipos de Resaltos. Flujo no permanente espacialmente variado.
	Estructuras hidráulicas y mediciones de caudales
Tema 2	Definiciones sobre orificios, Cálculo del caudal desaguado por orificios, Definiciones sobre vertederos, Cálculo del caudal desaguado por vertederos.
	Modelo reducidos
Tema 3	Consideraciones generales, Análisis dimensional, Ecuaciones de semejanza (teorema de Buckingum).
Tema 3	dimensional, Ecuaciones de semejanza
Tema 3	dimensional, Ecuaciones de semejanza (teorema de Buckingum).
	dimensional, Ecuaciones de semejanza (teorema de Buckingum). Introducción al ciclo hidrológico Introducción al ciclo hidrológico, precipitación, pérdidas hidrológicas,

Contenidos de problemas y prácticas

La mayoría de los temas citados en la sección anterior llevan asociados enunciados de problemas y sus resoluciones.

Los temas 1 y 2 llevan asociada, además, una práctica de laboratorio.

Problemas Tema 1	Problemas sobre cálculo de calado normal, calado crítico, RPU, RPGV, resalto hidráulico.
Problemas Tema 2	Problemas sobre orificios, vertederos, sifones.
Problemas Tema 3	Problemas sobre el análisis dimensional y el Teorema de Buckingum.
Problemas Tema 4	Problemas sobre el cálculo de precipitaciones y caudales máximos.
Práctica	Perfiles el lamina libre y resalto hidráulico
Tema 1-2	Práctica de laboratorio sobre hidráulica de canales abiertos analizando perfiles en régimen permanente gradualmente variado.

4.4. Planificación de las actividades de aprendizaje y calendario de fechas clave

Calendario de sesiones presenciales y presentación de trabajos

Las fechas de los dos exámenes finales serán publicadas en la web de la EUPLA.

Para los alumnos que opten por el sistema de evaluación continua, el I examen de evaluación continua se celebrará durante el mes de abril (la fecha exacta se comunicará el primer día de clase), mientras el II examen de evaluación continua se celebrará el último día de clase.

La práctica se desarrollará a lo largo del semestre, estando fijada la siguiente fecha como día límite para la entrega del informe sobre la misma:

• Entrega trabajo Práctica: fecha examen de I convocatoria

El primer examen de evaluación continua consistirá en una prueba escrita sobre temas teóricos (aproximadamente 20%) y problemas (aproximadamente 80%) de los Temas 1 y 2.

El segundo examen de evaluación continua se realizará el último día de clase y consistirá en una prueba escrita sobre argumentos teóricos (aproximadamente 20%) y problemas (aproximadamente 80%) de los Temas 3, 4 y 5.

El examen global de evaluación no continua se realizará al final del semestre según el calendario oficial del centro y consistirá en una prueba escrita sobre argumentos teóricos (aproximadamente 20%) y problemas (aproximadamente 80%) de los temas tratados en clase.

4.5.Bibliografía y recursos recomendados