

## 62223 - Distributed Systems and Networking

#### Información del Plan Docente

Academic Year 2017/18

Faculty / School 110 - Escuela de Ingeniería y Arquitectura

**Degree** 534 - Master's in IT Engineering

**ECTS** 6.0 **Year** 1

Semester First semester

Subject Type Compulsory

Module ---

- 1.General information
- 1.1.Introduction
- 1.2. Recommendations to take this course
- 1.3. Context and importance of this course in the degree
- 1.4. Activities and key dates
- 2.Learning goals
- 2.1.Learning goals
- 2.2.Importance of learning goals
- 3. Aims of the course and competences
- 3.1. Aims of the course
- 3.2.Competences
- 4.Assessment (1st and 2nd call)
- 4.1. Assessment tasks (description of tasks, marking system and assessment criteria)
- 5. Methodology, learning tasks, syllabus and resources
- 5.1.Methodological overview

The methodology followed in this course is oriented towards achievement of the learning objectives. A wide range of teaching and learning tasks are implemented, such as:

#### Classroom activities

• Lectures. The instructor presents and explains the class contents, including illustrative examples.



### 62223 - Distributed Systems and Networking

- Problem-Based Learning. Educational approach to learning and instruction in which students tackle real problems in small groups under the supervision of the teacher.
- Practice sessions. Any practical and collaborative activity taught in the class.
- · Laboratory sessions. Activities done in laboratories with special equipment (computing and networking)
- Tutorials. Students can discuss and review with the teacher the materials explained in the class.
- Assessment. A set of written or oral tests, exercises, laboratory sessions, project, assignments, etc.

#### Autonomous work

- Assignments. Preparation of seminars, readings, small research projects, documents to be presented on the classroom or handed in to the teacher.
- Coursework. Preparation of activities to be presented or submitted in the practice sessions.
- Study of theory. Exam preparation, library research, readings, problem solving, etc.
- Study of practical contents related to assignments.
- Complementary activities. Optional and voluntary activities unrelated to the exams and grading such as readings, seminars, workshops, videos, etc.

### 5.2.Learning tasks

The course (150 hours) includes the following learning tasks:

- · Lectures (20 hours).
- Practice sessions (10 hours). Problem-solving tasks.
- Laboratory sessions (15 hours).
- · Assignments and research projects (20 hours).
- Tutorials (5 hours).
- Autonomous work and study (70 hours).
- Assessment (5 hours). Exam and defense of the course project.

#### 5.3. Syllabus

The course will address the following topics:

- 1. Basic concepts: Architecture and components. Communication. Coordination. Consistency. Virtualisation
- 2. High availability: Fault detection. Quorums. Group Communication
- 3. Cloud systems: Unique image. Elasticity. Example PASS: Cloud Foundry. Example IAAS: Openstack
- 4. Software Defined Networks: Architecture and Implementation. Abstractions. Network Virtualisation. SDN programming. Applications
- 5. Cloud distributed services: Scheduling. Storage. Security
- 6. Administration of distributed systems

#### 5.4. Course planning and calendar

The planning at the Rio Ebro campus is organised as follows:

- Lectures. 2h/week
- Practice sessions and problem-solving tasks 1h/week
- Laboratory sessions 2h/every 2 weeks

The exact hours will be announced beforehand in the Center's and course's websites.

The class projects will be submitted at the end of the semester, on the proposed dates.

#### 5.5.Bibliography and recommended resources

Coulouris, George F.. Distributed systems: concepts and design / George Coulouris, Jean Dollimore, Tim Kindberg
 . - 4th ed., 5th print. Harlow (England): Addison-Wesley, 2009



# 62223 - Distributed Systems and Networking

- Göranson, Paul. Software Defined Networks, A comprehensive Approach / Paul Göransson and Chuck Black Morgan Kaufman, 2014
- Kshemkalyani, Ajay D.. Distributed computing : principles, algorithms, and systems / Ajay D. Kshemkalyani and Mukesh Singhal. Cambridge : Cambridge University Press, 2011
- Nadeau, Thomas D.. SDN: software defined networks / by Thomas D. Nadeau, Ken Gray. 1st ed. Beijing [etc.]:
  O'Reilly Media, 2013