30116 - Basic principles of electrical technology

Informe del Plan Docente

Academic Year 2017/18

Faculty / School
175 - Escuela Universitaria Politécnica de La Almunia
179 - Centro Universitario de la Defensa - Zaragoza

Degree
425 - Bachelor's Degree in Industrial Organisational Engineering
457 - Bachelor's Degree in Industrial Organisational Engineering
563 - Bachelor's Degree in Industrial Organisational Engineering

ECTS 6.0

Year 2

Semester Second semester

Subject Type Compulsory

Module ---

1. General information

1.1. Introduction

1.2. Recommendations to take this course

1.3. Context and importance of this course in the degree

1.4. Activities and key dates

2. Learning goals

2.1. Learning goals

2.2. Importance of learning goals

3. Aims of the course and competences

3.1. Aims of the course

3.2. Competences

4. Assessment (1st and 2nd call)

4.1. Assessment tasks (description of tasks, marking system and assessment criteria)

5. Methodology, learning tasks, syllabus and resources

5.1. Methodological overview

The learning process designed for this subject is based on the following:
SPECIALIZATION IN BUSINESS

Strong interaction between the teacher/student. This interaction is brought into being through a division of work and responsibilities between the students and the teacher. Nevertheless, it must be taken into account that, to a certain degree, students can set their learning pace based on their own needs and availability, following the guidelines set by the teacher.

The current subject fundamentals of Electrotechnics is conceived as a stand-alone combination of contents, yet organized into three fundamental and complementary forms, which are: the theoretical concepts of each teaching unit, the solving of problems or resolution of questions and laboratory work, at the same time supported by other activities.

The organization of teaching will be carried out using the following steps:

• **Theory Classes**: Theoretical activities carried out mainly through exposition by the teacher, where the theoretical supports of the subject are displayed, highlighting the fundamental, structuring them in topics and or sections, interrelating them.

• **Practical Classes**: The teacher resolves practical problems or cases for demonstrative purposes. This type of teaching complements the theory shown in the lectures with practical aspects.

• **Laboratory Workshop**: The lecture group is divided up into various groups, according to the number of registered students, in order to make up smaller sized groups.

• **Group Tutorials**: Programmed activities of learning follow-up in which the teacher meets with a group of students to guide their work of autonomous learning and supervision of works directed or requiring a very high degree of advice by the teacher.

• **Individual Tutorials**: Those carried out giving individual, personalized attention with a teacher from the department. Said tutorials may be in person or online.

Defence profile

Ongoing study and effort are essential to achieve the learning outcomes of this course.

The methodology is based on lectures, practical classes with student participation, laboratory sessions. Some individual graded assignments are issued throughout the semester, such as homework, quizzes and other activities, trying to encourage the continued work of students.

5.2. Learning tasks

The programme offered to the student to help them achieve their target results is made up of the following activities...

SPECIALIZATION IN BUSINESS
Involves the active participation of the student, in a way that the results achieved in the learning process are developed, not taking away from those already set out, the activities are the following:

- **Face-to-face generic activities**:

 Theory Classes: The theoretical concepts of the subject are explained and illustrative examples are developed as support to the theory when necessary.

 Practical Classes: Problems and practical cases are carried out, complementary to the theoretical concepts studied.

 Laboratory Workshop: This work is tutored by a teacher, in groups of no more than 20 students.

- **Generic non-class activities**:

 Study and understanding of the theory taught in the lectures.

 Understanding and assimilation of the problems and practical cases solved in the practical classes.

 Preparation of seminars, solutions to proposed problems, etc.

 Preparation of laboratory workshops, preparation of summaries and reports.

 Preparation of the written tests for continuous assessment and final exams.

- **Tutored autonomous activities**.

 Although they will have more of a face character have been taken into account in part for their idiosyncrasies, they will be primarily focused on seminars and tutorials under the supervision of the teacher.

- **Reinforcement activities**.

 Non-contact marking character, through a virtual learning portal (Moodle) various activities that reinforce the basic contents of the subject be addressed. These activities can be customized or not, controlling their realization through it.

Defence profile

- Lectures: The topics addressed are the fundamental principles of electrical circuits, the operating principles of their elements, techniques and procedures for circuit analysis and study, and the operating principles of the most common electrical machines, as well as basic selection criteria. Student participation is encouraged.

- Problem classes: In order to illustrate the application of different procedures and techniques presented during the lectures, several problem cases are solved with the active collaboration of students.

- Laboratory sessions: With the aim of achieving a meaningful learning, many of the concepts presented in the lecture sessions are applied in the laboratory. Many working techniques on electrical circuits are exercised in the laboratory, students acquire skills in the use of electrical measuring devices and they also acquire awareness of electrical
hazards, being able to implement basic actions to avoid unsafe work conditions.

- Evaluable Activities: There are two types:
 - Some consist of the resolution by the students, in their study time, of different exercises proposed by the teacher. The correction and marking of these exercises provides information to students about the work that has developed.
 - The second type of assessment activities involves the resolution of brief questionnaires, for a certain time of a lecture session, that require the direct application of concepts to be seen throughout the semester.

5.3. Syllabus

SPECIALIZATION IN BUSINESS

The subject is structured around two complementary components contents:
Theorists.
Practical.
THEORETICAL CONTENTS.

The theoretical contents are articulated based on eight teaching units attached relationship, indivisible blocks of treatment, given the configuration of the subject that program. These topics collect the contents needed for the acquisition of predetermined learning outcomes.

- TOPIC 1: Basic electrical concepts.
- TOPIC 2: Direct current.
- TOPIC 3: Single Phase sinusoidal alternating current.
- TOPIC 4: Three phase sinusoidal alternating current.
- TOPIC 5: Single phase transformers.
- TOPIC 6: Three phase transformers.
- TOPIC 7: Direct current motors.
- TOPIC 8: Three phase asynchronous motors.

PRACTICAL CONTENTS.

Those workshop to be developed in the laboratory, which will be performed by students in sessions of one hour below.

- WORKSHOP 1: Measurement Resistance.
- WORKSHOP 2: Measurement capabilities.
- WORKSHOP 3: Measurement inductances.
- WORKSHOP 4: Electrical measurements in sinusoidal steady series RLC circuit.
- WORKSHOP 5: Measure Direct current power.
- WORKSHOP 6: Power measurement and power factor correction in a single phase sistem.
Defence profile

Syllabus:

Topic 1: Kirchhoff's Laws.
1.1. Introduction.
1.2. Units.
1.3. Definitions.
1.4. References' polarity.
1.5. Kirchhoff's laws.

Topic 2: Elements of circuits.
2.1. Ideal elements of circuits.
2.1.1. Dipoles.
2.1.2. Quadripoles.
2.2. Real elements of circuits.

Topic 3: Power and energy.
3.1. Definitions.
3.2. Energy and power in dipoles.
3.3. Energy and power in quadripoles.

Topic 4: Circuit analysis methods.
4.1. Introduction.
4.2. Operational impedances and admittances.
4.3. Operational impedances and admittances association. Voltage divider and current divider.
4.4. Circuit representations.
4.5. Branch transformations.
4.6. Real source transformations.
4.7. Network circuit analysis methods.
4.7.1. Nodal analysis method.
4.7.2. Mesh analysis method.

Topic 5: Fundamental theorems.
5.1. Introduction.
5.2. Superposition theorem.
5.3. Thevenin's theorem.
5.4. Norton's theorem.

Topic 6: Sinusoidal steady state electric circuit analysis.
6.1. Introduction.
6.2. Sinusoidal voltage generation.
6.4. Circuits supplied with sinusoidal sources.
6.5. Determination of the sinusoidal steady state.
6.7. Passive components in sinusoidal steady state.
6.9. Methods of circuit analysis in sinusoidal steady state.
6.10. Fundamental theorems in sinusoidal steady state.
6.11. Basic circuits in sinusoidal steady state.

Topic 7: Power in sinusoidal steady state circuits.
7.1. Instantaneous power.
7.2. Instantaneous power in basic passive dipoles.
7.4. Complex power in the passive dipoles.
7.5. Power factor.
7.6. Theorems related with power in sinusoidal steady state.
7.7. Power measurement.

Topic 8: Balanced three-phase systems.
8.1. Introduction.
8.2. Generating a three-phase system.
8.3. Wye and delta connections.
8.4. Three-phase systems schemes.
8.5. Voltages and currents in three-phase systems.
8.6. Balanced three-phase systems.

9.1. Introduction: definition and classification.
9.2. General constitution of a transformer.
9.3. Transformers selection.

5.4. Course planning and calendar

SPECIALIZATION IN BUSINESS

The subject has 6 ECTS credits, which represents 150 hours of student work in the subject during the trimester, in other words, 10 hours per week for 15 weeks of class.

A summary of a weekly timetable guide can be seen in the following table. These figures are obtained from the subject file in the Accreditation Report of the degree, taking into account the level of experimentation considered for the said subject is moderate.
Nevertheless the previous table can be shown into greater detail, taking into account the following overall distribution:

- 45 hours of lectures, with 50% theoretical demonstration and 50% solving type problems.
- 10 hours of laboratory workshop, in 1 or 2 hour sessions.
- 5 hours of written assessment tests, one or two hour per test.
- 90 hours of personal study, divided up over the 15 weeks of the semester.

Written continuous assessment tests are related to the following topics:

- **Written assessment test 1**: Topics 1, 2, 3 y 4.
- **Written assessment test 2**: Topics 5, 6, 7 y 8.

The issues on which the work will be developed will be proposed in the third week, carrying out delivery and exposure before the last two weeks teaching in the course of the signature dates will be specified.

The most significant dates of the continuous evaluation system will be published in moodle during the development of the course.

The dates of the global evaluation test will be published officially in http://www.eupla.unizar.es/index.php/secretaria-2/informacion-academica/distribucion-de-examenes

Defence profile

Lectures and problem classes, and the laboratory sessions are held according to schedule established by the Centre and available on the website of Centro Universitario de la Defensa (http://cud.unizar.es).

The other activities of the course are announced well in advance through the Moodle platform (http://moodle2.unizar.es).
5.5. Bibliography and recommended resources

SPECIALIZATION IN BUSINESS

Bibliography:

Bachiller Soler, Alfonso. Problemas resueltos de circuitos trifásicos. Parte I / Alfonso Bachiller Soler, Ramón Cano
30116 - Basic principles of electrical technology

González, Narciso Moreno Alfonso. - 1ª edición Sevilla : Narciso Moreno Alfonso, 2005
Fraile Mora, Jesús. Electromagnetismo y circuitos eléctricos : Curso de Electrotecnia / J.Jesús Fraile Mora . - 3ª ed. [Madrid] :
Colegio de Ingenieros de Caminos, Canales y Puertos, 1995

Resources and materials used in the development of the subject are reflected in the following table:

<table>
<thead>
<tr>
<th>Material</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topic theory notes</td>
<td>Paper/repository</td>
</tr>
<tr>
<td>Topic problems</td>
<td></td>
</tr>
</tbody>
</table>
30116 - Basic principles of electrical technology

<table>
<thead>
<tr>
<th>Topic theory notes</th>
<th>Digital/Moodle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topic presentations</td>
<td>E-Mail</td>
</tr>
<tr>
<td>Topic problems</td>
<td></td>
</tr>
<tr>
<td>Related links</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Software</th>
<th>Pc's laboratorio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical manuals</td>
<td>Paper/repository</td>
</tr>
<tr>
<td></td>
<td>Digital/Moodle</td>
</tr>
</tbody>
</table>

Multimeters	
ammeters	
Voltmeters	
Power Meters	
Frequency	
Transformers	
Rectifiers	
Oscilloscopes	
Single and three phase loads	
Engines	
Electrical switchgear	

Defence profile:

- **BB** Análisis de circuitos eléctricos I / Ángel Antonio Bayod Rújula ... [et al.] . - 2ª ed. Zaragoza : Prensas Universitarias de Zaragoza, 2007

- **BB** Bayod Rújula, Ángel Antonio. Análisis de circuitos trifásicos en régimen estacionario senoidal / Angel Antonio Bayod Rújula Zaragoza: Prensas Universitarias de Zaragoza, 2005

- **BB** Bayod Rújula, Ángel Antonio. Circuitos monofásicos en régimen estacionario senoidal/ Angel Antonio Bayod Rújula . 1ª ed. Zaragoza: Prensas Universitarias de Zaragoza, 2005

- **BB** C. Garrido y J. Cidrás. Problemas de circuitos eléctricos. 1ª ed. Reverté

Problemas de fundamentos de electrotecnia / Miguel Ángel García García, Joaquín Mur Amada, Nabil El Halabi, Iván Cristóbál Monreal . - 1ª ed. Zaragoza : Centro Universitario de la Defensa, 2013

