

Información del Plan Docente

Año académico 2017/18

Centro académico 110 - Escuela de Ingeniería y Arquitectura

Titulación 435 - Graduado en Ingeniería Química

Créditos 6.0

Curso 3

Periodo de impartición Segundo Semestre

Clase de asignatura Obligatoria

Módulo ---

1.Información Básica

1.1.Introducción

Breve presentación de la asignatura

La asignatura de Termotecnia es una asignatura de 6 créditos que se imparte en el segundo cuatrimestre de tercer curso en el Grado en Ingeniería Química. Su objetivo es que el alumno conozca los procedimientos básicos de cálculo de transferencia de calor, las principales tecnologías de producción de trabajo, calor y frío y capacitarlo para analizar y mejorar instalaciones térmicas mediante el análisis energético y la transferencia de calor. Forma parte de las asignaturas base para el bloque optativo de Procesos e Instalaciones de la Industria Química de cuarto curso.

1.2. Recomendaciones para cursar la asignatura

A la hora de cursar la asignatura de Termotecnia se considera imprescindible que el estudiante haya superado la asignatura de Termodinámica Técnica y Fundamentos de Transferencia de Calor. Asimismo se considera muy recomendable que el estudiante haya superado la asignatura de Mecánica de Fluidos de 2º curso. Resultará indispensable la soltura con el cálculo y el algebra básicos, entre los que deben incluirse sus conceptos y operaciones matemáticas básicas como derivación e integración, representaciones gráficas y la resolución de ecuaciones diferenciales sencillas. Todo ello se aprende en la materia de Matemáticas correspondiente a Formación Básica.

Se recomienda al alumno la asistencia activa a las clases de teoría y problemas, así como un estudio continuado de los contenidos de la asignatura, la preparación de los problemas prácticos que puedan ser resueltos en sesiones posteriores, la elaboración continua de los resultados de trabajos prácticos. El trabajo continuado es fundamental para superar con el máximo aprovechamiento esta asignatura, ya que cada parte se estudia gradualmente con un procedimiento progresivo. Por ello, cuando surjan dudas, es importante resolverlas cuanto antes para garantizar el progreso correcto en esta materia. Para ayudarle a resolver sus dudas, el estudiante cuenta con la asesoría del profesor, tanto durante las clases como en las horas de tutoría destinadas a tal fin.

1.3. Contexto y sentido de la asignatura en la titulación

La asignatura sirve de continuación de la asignatura de termodinámica técnica y fundamentos de transferencia de calor, profundizando en la fenomenología y los principios básicos de la generación de calor y de frío y de sus mecanismos de transporte. El alumno se familiarizará con la metodología de la ingeniería térmica para abordar, analizar, modelar y simular equipos e instalaciones energéticas importantes en la industria química y a nivel económico y social: calderas, intercambiadores de calor, captadores solares, sistemas de cogeneración, sistemas de refrigeración y de aire acondicionado, etc.

1.4. Actividades y fechas clave de la asignatura

Las fechas de inicio y finalización de la asignatura y las horas concretas de impartición se podrán encontrar en la página web del Centro: http://eina.unizar.es

Desde el inicio del cuatrimestre los alumnos dispondrán del calendario detallado de actividades que será proporcionado por el profesor correspondiente. La relación de fechas y actividades concretas, así como todo tipo de información y documentación sobre la asignatura, en principio se publicará en el Anillo Digital Docente (para el acceso a este recurso web, el estudiante deberá estar matriculado en la asignatura).

2. Resultados de aprendizaje

2.1. Resultados de aprendizaje que definen la asignatura

El estudiante, para superar esta asignatura, deberá demostrar los siguientes resultados...

Conoce las fuentes y recursos energéticos para la industria química y de sus procesos de transformación.

Conoce de las principales tecnologías de producción de calor, frío y trabajo en el ámbito de la ingeniería térmica con aplicación a la industria química.

Tiene capacidad y criterio para analizar, dimensionar y seleccionar equipos de utilización, producción y transformación de la energía térmica y mecánica en la industria química.

Es capaz de realizar el análisis energético de sistemas de producción de energía para la industria química.

2.2.Importancia de los resultados de aprendizaje

En lo que respecta a la asignatura de Termotecnia, el análisis y la optimización de instalaciones energéticas es de vital importancia para el Graduado en Ingeniería Química, ya que son tecnologías que permiten el actual desarrollo social, tecnológico y económico. De acuerdo con las competencias profesionales de esta titulación, el futuro graduado deberá abordar proyectos para mejorar el rendimiento de una instalación determinada, obtener el mismo resultado mediante un sistema o equipo diferente, utilizar un fenómeno particular con un fin determinado o inventar nuevas aplicaciones del mismo. La asignatura de Termotecnia dota al estudiante de las herramientas para abordar estas tareas con éxito, junto con asignaturas posteriores del bloque optativo que profundizan en ciertos aspectos y presentan técnicas y métodos de análisis más avanzados.

3. Objetivos y competencias

3.1.Objetivos

La asignatura y sus resultados previstos responden a los siguientes planteamientos y objetivos:

La asignatura de Termotecnia se ha planteado para que, una vez superada la evaluación, el alumno sea capaz de:

- 1. Comprender las propiedades del aire y analizar los procesos básicos de acondicionamiento del aire. Analizar el comportamiento del aire húmedo.
- 2. Aplicar las leyes que rigen los mecanismos de transferencia de calor con cambio de fase en evaporadores y condensadores, así como las de convección natural.
- 3. Conocer el modo de transferencia de calor transitorio.
- 4. Manejar con soltura herramientas informáticas para el cálculo de métodos numéricos de transferencia de calor en transitorio y estacionario.

- 5. Conocer y aplicar las leyes que rigen los mecanismos de transferencia de calor con radiación térmica.
- 6. Analizar intercambiadores de calor multimodo.
- 7. Conocer los procesos de producción de calor.
- 8. Aplicar balances de materia y energía a procesos de combustión (Termoquímica), y conocer las principales tecnologías de la combustión. Quemadores, calderas, hornos, etc.
- 9. Conocer los procesos de producción de trabajo.
- 10. Analizar las turbomáquinas térmicas: turbinas y compresores.
- 11. Analizar las máquinas y sistemas de producción de trabajo: Ciclos de vapor, turbinas de gas, MACI, pilas de combustible, etc.
- 12. Conocer los modos de producción de frío, y analizar las máquinas y sistemas frigoríficos de compresión mecánica y de absorción. Ciclos criogénicos. Licuación de gases.

3.2.Competencias

Al superar la asignatura, el estudiante será más competente para...

Competencias genéricas

- C04 Capacidad para resolver problemas y tomar decisiones con iniciativa, creatividad y razonamiento crítico.
- C07 Capacidad para usar las técnicas, habilidades y herramientas de la Ingeniería necesarias para la práctica de la misma.
- C10 Capacidad de gestión de la información, manejo y aplicación de las especificaciones técnicas y la legislación necesarias para la práctica de la Ingeniería.
- C11 Capacidad para aprender de forma continuada y desarrollar estrategias de aprendizaje autónomo.

Competencias específicas

- C36 Capacidad para aplicar conocimientos sobre sistemas de distribución de fluidos.
- C37 Capacidad para aplicar conocimientos sobre sistemas térmicos.

4. Evaluación

4.1. Tipo de pruebas, criterios de evaluación y niveles de exigencia

El estudiante deberá demostrar que ha alcanzado los resultados de aprendizaje previstos mediante las siguientes actividades de evaluacion

Trabajos tutorados. Carácter: semipresencial. El estudiante con la guía del profesor busca información, analiza y resuelve un tema de cierta complejidad y entrega un informe de resultados. El estudiante desarrolla su capacidad de análisis y espíritu crítico en el ámbito de los equipos y sistemas térmicos empleados en la industria química (20% de la nota final).

Examen escrito . Duración: 3 h. Constará de dos partes diferenciadas: una parte teórica en forma de cuestiones de tipo teórico-práctico; una segunda parte puramente práctica consistente en varios problemas similares a los resueltos en

clase. Esta prueba pretende evaluar los conocimientos adquiridos por el alumno y su destreza a la hora de aplicarlos a la resolución de algunos problemas prácticos (80% de la nota final).

Criterios de valoración y niveles de exigencia

En todas las actividades de evaluación se valorarán los siguientes aspectos y cualidades en el grado indicado en cada caso:

- Realización propia de las tareas (fundamental): la detección de plagios o copia fraudulenta de los trabajos anulará las calificaciones de las actividades de curso.
- Planteamiento correcto del procedimiento de resolución de las cuestiones y problemas planteados.
- Exactitud de los resultados obtenidos, comparándolos con resultados conocidos y fiables.
- Se exigirá demostrar un conocimiento mínimo de cada uno de los contenidos básicos de la asignatura
- Corrección y claridad en la comunicación escrita: ortografía correcta, letra clara, correcta expresión, exposición coherente
- Análisis crítico de los resultados (importante): coherencia, relación con otros aspectos de la asignatura, posibilidades de mejora, etc.

Para la resolución de los trabajos tutorados se valorará también:

- Entrega en el plazo estipulado (fundamental): no se admitirán informes fuera de la fecha límite, salvo causa justificada debidamente.
- Entrega en el formato y procedimiento indicado por el profesor.

Procedimientos de evaluación

1ª Convocatoria: el procedimiento planteado consiste en dos pruebas que permiten superar el 100% de la asignatura. La primera de ellas, el trabajo tutorado, se realizará durante el periodo docente, mientras que la segunda, el examen escrito, se realizará en el periodo de exámenes. La nota final se calculará mediante la ponderación de las notas de cada una de las partes, de acuerdo con los siguientes pesos: 80 % examen escrito (teoría y problemas), 20 % trabajos tutorados (realización y entrega obligatorias). Para sumar la nota de ambas pruebas es necesario obtener en el examen escrito al menos el 40% de la nota máxima del mismo.

2ª Convocatoria: el procedimiento seguido en este caso es idéntico al de la primera convocatoria.

5. Metodología, actividades, programa y recursos

5.1. Presentación metodológica general

El proceso de aprendizaje que se ha diseñado para esta asignatura se basa en lo siguiente:

- 1. Clases magistrales, impartidas al grupo completo, en las que el profesor explicará los principios básicos de la asignatura y resolverá algunos problemas representativos de la aplicación de la asignatura a casos realistas del futuro ejercicio profesional. Se buscará la participación de los alumnos en esta actividad. Paralelamente el alumno debe realizar trabajo personal de estudio para un mejor aprovechamiento de las clases.
- 2. **Trabajos tutorados** en grupos pequeños (parejas idealmente): los estudiantes analizan y resuelven un tema de la asignatura. Se potencia el aprendizaje autónomo y el trabajo en grupo.
- 3. **Tutorías** académicas: el profesor pondrá a disposición del estudiante ciertos procedimientos para el planteamiento y la resolución de dudas. Se recomienda altamente el uso de estas tutorías para asegurar el adecuado progreso en el aprendizaje.

5.2. Actividades de aprendizaje

Para logra los resultados previstos se proponen las siguientes actividades:

- 1. Clases magistrales y de problemas
- 2. Prácticas de simulación con ordenador y de laboratorio

Recursos

29927 - Termotecnia

3. Trabajos tutorados en grupos pequeños
4. Planteamiento de ejercicios, cuestiones y problemas
5. Tutorías académicas
5.3.Programa
El programa detallado de la asignatura se presentará a principio de curso por el profesor que la imparta y cubrirá los objetivos propuestos, tanto en los aspectos teóricos como los prácticos, acerca de los siguientes contenidos:
Tema 1. Producción de calor: Termoquímica de la combustión. Balances de materia y energía. Poderes caloríficos. Temperatura adiabática de llama.
Tema 2. Psicrometría: Propiedades del aire. Procesos de acondicionamiento del aire. Torres de enfriamiento evaporativo.
Tema 3. Producción de trabajo: Motores de combustión interna. Turbomáquinas térmicas.
Tema 4. Producción de frío: Ciclos de absorción. Sistemas especiales de producción de producción de frío.
Tema 5. Licuación de gases: Licuación por enfriamiento. Efecto Joule-Thomson y licuación por estrangulación.
Tema 6. Transferencia de calor: Transferencia de calor por conducción: aletas. Transferencia de calor por convección. Transferencia de calor por radiación. Intercambiadores de calor.
5.4.Planificación y calendario Calendario de sesiones presenciales y presentación de trabajos
Por determinar al comienzo del curso académico.

Para facilitar y reforzar la comunicación entre el estudiante y el profesor, se podrá poner a disposición de los alumnos si el profesor lo estima conveniente, la plataforma del Anillo Digital Docente (ADD) de la Universidad de Zaragoza. En ella el profesor podrá distribuir los materiales de la asignatura (apuntes, cuestiones, problemas, exámenes tipo, tablas, etc.), realizar anuncios y notificaciones a los estudiantes, enviar y recibir correos y poner a disposición de los estudiantes las herramientas para la realización en el envío de los informes de las actividades de aprendizaje.

5.5.Bibliografía y recursos recomendados

•	
ВВ	engel, Yunus A Termodinámica / Yunus A. Çengel, Michael A. Boles; revisión técnica, Abraham Laurencio Martínez Bautista [et al.] . 8ª ed. Mexico [etc.]: McGraw-Hill Interamericana, D.L. 2015 Çengel, Yunus A Transferencia de calor y
ВВ	masa: fundamentos y aplicaciones / Yunus A. à‡engel, Afshin J. Ghajar; revisión técnica Rosario Dávalos Gutiérrez, Juan José Coble Castro, Sofía Faddeeva Sknarina, Álvaro Ochoa López 4ª ed. México D.F.: McGraw-Hill Interamericana, cop. 2011
	Moran, Michael J., Fundamentos de
ВВ	termodinámica técnica / Michael J. Moran, Howard N. Shapiro 2ª ed. en español, reimp. Barcelona [etc.] : Reverté, D. L. 2011
ВВ	Winterbone, Desmond E Advanced thermodynamics for engineers / Desmond E. Winterbone [1st. publ.] London [etc.] : Arnold, cop. 1997
ВС	Giacosa, Dante. Motores endotérmicos: motores de encendido por chispa, de carburación y de inyección, motores de encendido por compresión Diesel, lentos y veloces, motores rotativos, turbinas de gas, teoría, construcción, pruebas / Dante Giacosa Barcelona: Omega, D.L.1988
ВС	Golden, Frederick M Termofluidos, turbomáquinas y máquinas térmicas / Frederick M. Golden, Luis Batres de la Vega, Guillermo Terrones 1a ed. Mexico : Compañía Editorial Continental, 1989 Muñoz Rodríguez, Mariano. Motores
ВС	alternativos de combustión interna / Mariano Muñoz Rodríguez, Francisco Moreno Gómez, Jesús F. Morea Roy Zaragoza : Prensas Universitarias de Zaragoza, 1999
ВС	Turbomáquinas térmicas / Mariano Muñoz Rodriguez, Francisco J. Collado Giménez, Francisco Moreno Gómez, Jesús F. Morea

Roy . - 1a ed. Zaragoza : Prensas

Universitarias, 1999