

#### Información del Plan Docente

Año académico 2017/18

Centro académico 175 - Escuela Universitaria Politécnica de La Almunia

**Titulación** 422 - Graduado en Arquitectura Técnica

Créditos 6.0

Curso

Periodo de impartición Primer Semestre

Clase de asignatura Formación básica

Módulo ---

#### 1.Información Básica

## 1.1.Introducción

En esta asignatura se exponen nociones básicas de Química y Geología. En ella se aborda el conocimiento de la materia, desde el estudio de su estructura más íntima hasta la consideración de los aspectos macroscópicos que influyen en su naturaleza y propiedades. Asimismo se estudian los principios que afectan a las disoluciones y a la estequiometria de las reacciones, se efectúa una introducción al análisis químico y al conocimiento de los materiales más utilizados en la ingeniería de la edificación, así como un estudio del impacto medioambiental y la gestión de los residuos procedentes de la construcción. También se realiza una introducción a los principales procesos geológicos.

# 1.2. Recomendaciones para cursar la asignatura

Resulta recomendable haber cursado la asignatura de Química en algún curso del Bachillerato.

## 1.3. Contexto y sentido de la asignatura en la titulación

La asignatura pertenece al módulo de Formación Básica y está programada en el primer semestre del primer curso del Grado en Arquitectura Técnica. Aporta los conocimientos químicos necesarios a cualquier graduado en estudios de ingeniería y arquitectura, en especial para la comprensión de conceptos que serán adquiridos en otra asignaturas como Medio Ambiente e Ingeniería de los Materiales.

# 1.4. Actividades y fechas clave de la asignatura

La asignatura incluye clases teóricas y prácticas, tanto de resolución de problemas como de realización de ensayos en el laboratorio.

Los horarios de las **clases lectivas** en que se desarrollan la teoría y los problemas se establecen por la Subdirección Académica del Centro y son oportunamente anunciados en la web. Las clases de **prácticas en el laboratorio**, a celebrar en grupos que no superarán los 16 alumnos, serán oportunamente anunciadas por el profesor de la asignatura, tanto en lo referente al calendario de las mismas como a la composición de los diferentes grupos. Los **trabajos** a realizar deberán ser entregados en el plazo que en cada caso se especifique. Las **fechas de las pruebas parciales de evaluación** serán propuestas en clase y concretadas en colaboración de profesor y alumnos, a medida que se vayan impartiendo los correspondientes bloques temáticos a que hagan referencia. Las **tutorías** tendrán lugar en el horario que el profesor establezca y que será anunciado en la web del centro. La **fecha oficial de la prueba global de evaluación**,



que se efectuará al final del periodo de enseñanza, será fijada por la Dirección del Centro y publicada en http://www.eupla.es.

# 2. Resultados de aprendizaje

# 2.1. Resultados de aprendizaje que definen la asignatura

El estudiante, para superar esta asignatura, deberá demostrar los siguientes resultados:

Explicar los conceptos relativos a la estructura de la materia, las disoluciones y las reacciones así como los fundamentos geológicos de la corteza terrestre.

Aplicar los conocimientos adquiridos de Química y Geología.

Utilizar métodos numéricos en la resolución de los problemas químicos que se proponen.

Resolver cuestiones y problemas de Química General.

Conocer y utilizar de forma adecuada equipamiento básico de laboratorio para realizar experimentos químicos sencillos.

Tener destreza para manejar el lenguaje químico; particularmente el lenguaje simbólico y formal.

Interpretar y presentar contenidos de textos científicos básicos.

Comprender la técnica empleada en informes referentes al análisis químico de los materiales.

# 2.2.Importancia de los resultados de aprendizaje

Esta asignatura se incluye en el módulo de formación básica de la titulación que, en un sentido amplio, tiene como objeto unificar los conocimientos de los estudiantes y prepararlos para abordar materias más específicas del grado. En este sentido, junto con el resto de asignaturas de carácter básico, la materia Fundamentos de los Materiales de la Construcción contribuye a sentar las bases de un modelo científico y, además, a dotar a los futuros graduados de las herramientas necesarias para abordar otras disciplinas del grado que necesiten de conceptos químicos y geológicos.

## 3. Objetivos y competencias

# 3.1.Objetivos

El objetivo de la asignatura es que los estudiantes adquieran una visión básica de la estructura de la materia en relación con sus propiedades y con las transformaciones químicas que la materia puede sufrir. Igualmente, que consigan un conocimiento de la composición de la Tierra y de los procesos geológicos, así como del impacto ambiental de los residuos de la construcción.

## 3.2.Competencias

Tener capacidad de organización y planificación. Disponer de capacidad para la resolución de problemas.



Disponer de capacidad para tomar decisiones.

Tener aptitud para la comunicación oral y escrita de la lengua nativa.

Tener capacidad de análisis y síntesis.

Disponer de capacidad para gestionar la información.

Tener capacidad para trabajar en equipo.

Disponer de capacidad para el razonamiento crítico.

Disponer de capacidad para trabajar en un equipo de carácter interdisciplinar.

Tener aptitud para trabajar en un contexto internacional.

Tener capacidad de improvisación y adaptación para enfrentarse a nuevas situaciones.

Disponer de aptitud para el liderazgo.

Tener actitud social positiva frente a las innovaciones sociales y tecnológicas.

Disponer de capacidad de razonamiento, discusión y exposición de ideas propias.

Disponer de capacidad de comunicación a través de la palabra y de la imagen.

Tener capacidad de búsqueda, análisis y selección de la información.

Tener capacidad para el aprendizaje autónomo.

Poseer y comprender conocimientos en un área de estudio que parte de la base de la educación secundaria general, y se suele encontrar a un nivel, que si bien se apoya en libros de texto avanzados, incluye también algunos aspectos que implican conocimientos procedentes de la vanguardia de su campo de estudio.

Aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y resolución de problemas dentro de su área de estudio

Disponer de capacidad para reunir e interpretar datos relevantes (normalmente dentro de su área de estudio), para emitir juicios que incluyan una reflexión sobre temas relevantes de índole social, científica o ética.

Transmitir información, ideas, problemas y soluciones a un público tanto especializado como no especializado.

Desarrollar aquellas habilidades de aprendizaje necesarias parra emprender estudios posteriores con un alto grado de autonomía

Conocer y comprender el respeto a los derechos fundamentales, a la igualdad de oportunidades entre mujeres y hombres, la accesibilidad universal para personas con discapacidad, y el respeto a los valores propios de la cultura de la paz y los valores democráticos.

Fomentar el emprendimiento.

Disponer de conocimientos en tecnologías de la información y la comunicación

#### 4.Evaluación

## 4.1. Tipo de pruebas, criterios de evaluación y niveles de exigencia

El proceso de evaluación incluirá dos tipos de actuación:

- Un sistema de evaluación partida, que se realizará a lo largo de todo el curso y que incluirá:

La realización de prácticas en el laboratorio.

La realización de uno o más trabajos sobre aspectos prácticos de la asignatura.

La realización de pruebas parciales que permitan apreciar los conocimientos adquiridos.

- **Una prueba global de evaluación** que deberá efectuarse caso de no haber superado el proceso de evaluación continua.



#### SISTEMA DE EVALUACIÓN PARTIDA

Para poder acogerse a este sistema de evaluación el alumno deberá asistir de forma regular a clase, acreditando al menos un 80 % de asistencia a las actividades presenciales (clases, prácticas, visitas técnicas, etc.). En el sistema de evaluación partida el profesor evaluará la participación y trabajos derivados de las prácticas de laboratorio u otros . Por último, el alumno deberá realizar varias pruebas escritas en las que demuestre los conocimientos adquiridos y la habilidad en la resolución de aspectos prácticos.

Los criterios de evaluación a aplicar serán los siguientes:

#### Prácticas de laboratorio y trabajos:

Supondrá el 10% de la nota final y se realizará de acuerdo a la evaluación de problemas, cuestiones o trabajos relativos a las prácticas desarrolladas en el laboratorio o a otros temas propios de la asignatura que se puedan plantear, exigiéndose al menos un 5 en este apartado para poder superar la asignatura.

#### Pruebas parciales de evaluación:

Se plantearán tres pruebas parciales. Cada una de ellas tendrá una carga de teoría y práctica de aproximadamente el 50 % cada una.

Esta parte supondrá el 90 % de la nota final y para poder superarla es preciso tener aprobadas las cuatro pruebas o, habiendo superado al menos tres de ellas tener en la suspendida una nota no inferior a 3,0 y compensarla con las otras dos.

Los alumnos que no habiendo superado el criterio anterior tuvieran alguna prueba parcial suspendida deberán acudir al examen global final para superar las partes pendientes.

#### PRUEBA GLOBAL DE EVALUACIÓN FINAL

A esta prueba deberán acudir aquellos alumnos que no hayan elegido el sistema de evaluación partida o aquéllos que, habiendo optado por dicho sistema, no lo hubieran superado. Estos últimos únicamente deberán examinarse en esta prueba final de las pruebas parciales que tuvieran pendientes.

También podrán presentarse a esta prueba los alumnos que, aún superado el sistema de evaluación partida, desearan subir su calificación. En tal caso, deberían realizar la prueba en su totalidad.

La prueba será escrita y constará de teoría pura muy concreta o aplicada a cuestiones prácticas y problemas. La carga de teoría y práctica será aproximadamente del 50 % cada una.

## 5. Metodología, actividades, programa y recursos

# 5.1. Presentación metodológica general

La metodología de esta asignatura está basada en clases teóricas y de problemas, así como en la realización de prácticas en el laboratorio y elaboración de trabajos, todo ello completado con tutorías en grupo o de carácter individual.



Asimismo se abordan temas específicos en seminarios conjuntos.

# 5.2. Actividades de aprendizaje

La asignatura consta de 6 créditos ECTS, lo que representa 150 horas de trabajo del alumno en la asignatura durante el semestre. El 40% de este trabajo (60 h.) se realizará en el aula, y el resto será autónomo. Un semestre constará de 15 semanas lectivas.

Para realizar la distribución temporal se utiliza como medida la semana lectiva, en la cual el alumno debe dedicar al estudio de la asignatura 10 horas.

Se puede resumir la distribución orientativa de una semana lectiva de la forma siguiente:

Clases teóricas: 2

Clases prácticas: 2

Otras Actividades: 6

# 5.3. Programa

El programa que se ofrece al estudiante para ayudarle a lograr los resultados previstos comprende las siguientes actividades:

## **BLOQUE 1. ÁTOMO Y SISTEMA PERIÓDICO**

Tema 1.- El átomo

Partículas elementales. Modelos atómicos. Átomo de Bohr. Modelo de la Mecánica Cuántica. Orbitales atómicos; números cuánticos. Principios para la construcción electrónica de los átomos.

## Tema 2.- Estudio general de la Tabla Periódica

Descripción de la tabla periódica actual: Grupos y periodos. Estudio de la corteza electrónica y el sistema periódico. Propiedades periódicas.

## **BLOQUE 2.- EL ENLACE QUÍMICO**

#### Tema 3.- Enlace iónico

Caracteres generales del enlace iónico. Energía de red. Propiedades generales de los compuestos iónicos.



#### Tema 4.- Enlace covalente

Modelo simplificado: teoría de Lewis. Polaridad y geometría de los enlaces. Teoría del enlace de valencia. Hibridación de orbitales. Teoría de los orbitales moleculares.

#### Tema 5 - Enlace metálico

Caracteres generales de los metales. Teorías acerca del enlace metálico: teoría del mar de electrones y teoría del enlace de valencia. Aleaciones: clases.

## **BLOQUE 3.- ENLACES ENTRE MOLÉCULAS**

#### Tema 6.- Enlaces intermoleculares

Fuerzas de Van der Waals. Enlaces de puente de hidrógeno.

#### **BLOQUE 4.- ESTADOS DE AGREGACIÓN**

#### Tema 7.- Estado gaseoso

Caracteres generales de los gases. Leyes que rigen el estado gaseoso. Ecuación de estado. Teoría cinética. Mezclas de gases: Ley de Dalton. Efusión y difusión de gases: Ley de Graham. Gases reales: Ecuación de Van der Waals.

#### Tema 8.- Estado líquido

Caracteres generales de los líquidos. Presión de vapor. Efecto de la temperatura sobre la presión de vapor. Fenómenos críticos. Licuación de vapores y gases. Solidificación.

#### Tema 9.- Estado sólido

Caracteres de los sólidos. Clases de redes cristalinas. Clases de sólidos atendiendo al tipo de enlace. Regla de las fases y punto triple

## **BLOQUE 5.- INTRODUCCIÓN AL ESTUDIO DE LAS DISOLUCIONES**

#### Tema 10.- Introducción al estudio de las disoluciones

Sistemas dispersos. Tipos de disoluciones. Modo de expresar la concentración. Disoluciones de sólidos en líquidos. Disoluciones de líquidos en líquidos. Disoluciones de gases en líquidos. Propiedades coligativas de las disoluciones. Disoluciones coloidales.

### **BLOQUE 6.- INTRODUCCIÓN AL ESTUDIO DE LAS REACCIONES**



Tema 11.- Introducción al estudio de las reacciones. Estequiometría.

Expresión de una reacción. reactivo limitante y rendimiento. Reacciones con cales y yesos.

#### BLOQUE 7.- INTRODUCCIÓN AL ESTUDIO DE LOS MATERIALES E IMPACTO AMBIENTAL

Tema 12.- Introducción al análisis químico de los materiales

Gravimetrías. Volumetrías. Métodos instrumentales.

Tema 13.- Impacto medioambiental y gestión de los residuos de la construcción

Introducción. Impacto ambiental e iniciativas comunitarias. Legislación.

## **BLOQUE 8.- INTRODUCCIÓN A LA GEOLOGÍA**

Tema 14.- Introducción a la Geología. Rocas.

Composición de la Tierra. Composición de la corteza terrestre. Procesos geológicos. Historia y generalidades. Rocas, minerales y elementos. Clasificación de las rocas.

## **CURSO PRÁCTICO**

Práctica 1.- Conocimiento y manejo del material de laboratorio.

Normas básicas de seguridad e higiene en el laboratorio. Conocimiento y manejo del material básico de laboratorio.

Práctica 2.- Preparación de disoluciones.

Disolución sólido-líquido. Disolución líquido-líquido.

Práctica 3.- Filtración.

Filtración por gravedad. Filtración a vacio. Gravimetrías.

Práctica 4.- Análisis volumétrico .

Volumetrías: Volumetrías de neutralización.

Práctica 5.- Destilación.



Destilación simple de una mezcla de agua y etanol. Destilación fraccionada.

# 5.4. Planificación y calendario

La carga horaria y tipo de docencia asignada a cada tema será la siguiente:

PRESENTACIÓN Y BLOQUE 1 10 h Lección magistral y resolución de ejercicios

BLOQUES 2 y 3 12 h Lección magistral y resolución de ejercicios

BLOQUE 4 6 h Lección magistral y resolución de ejercicios

BLOQUES 5 y 6 14 h Lección magistral y resolución de ejercicios

BLOQUES 7 y 8 6 h Seminarios

CURSO PRÁCTICO 6 h Prácticas en laboratorio

Exámenes y Evaluación global (si procede) 6 h

Las fechas de los exámenes finales serán las publicadas de forma oficial en http://www.eupla.es//academica/examenes.html.

Los criterios de designación de fechas para realizar las pruebas parciales, la realización de prácticas secretaria y la presentación de trabajos están relatados en el apartado de Información básica de esta Guía (punto 1.4).

# 5.5.Bibliografía y recursos recomendados

#### **RECURSOS Y MATERIAL**

Apuntes de la asignatura : En reprografía se depositarán apuntes de la asignatura, así como los guiones

de prácticas. Las referencias respectivas son:

GONZÁLEZ PAÚLES, J. y BURBANO GARCÍA, G. Química y Geología. Fundamentos de Materiales de Construcción. Publicado en 2011 en colaboración con Burbano García, G. y Orna Carmona, M. (Servicio de Publicaciones EUPLA) . 254 págs. más 1 CD-Rom. ISBN 978-84-694-0616-8.

GONZÁLEZ PAÚLES, J. Química General. Apuntes del curso práctico. Ed. Eupla.2010. ISBN



978-84-692-8044-7

**Diapositivas en Power Point**: La exposición de la asignatura se plantea en su totalidad con ayuda de presentaciones con el programa informático Power Point. Los archivos en formato pdf relativos a cada uno de los temas estarán a disposición de los alumnos en la plataforma Moodle (https://moodle.unizar.es/)

Cualquier otro material adicional utilizado será depositado en la plataforma Moodle.

Material de laboratorio necesario para llevar a cabo las prácticas.

## **BIBLIOGRAFÍA**

- Gonzalez Paúles, J. Burbano García, G.. Apuntes de Química para el grado de ingeniería civil/Javier Gonzalez Paúles y Gloría Burbano García.. - 1ª Edición Eupla:La Almunia de doña godina(Zaragoza), 2011
- González Paúles, J.. Química General. Apuntes del curso práctico/ Javier González Paúles. 1ª edición Eupla:La Almunia de doña godina(Zaragoza), 2010
- Química: un proyecto de la American Chemical Society / [versión española por Roberto Martínez-Alvárez, Ma Josefa Rodríguez Yunta, Luis Sánchez Martín] Barcelona [etc.]: Reverté, D.L. 2005
- Química / Ronald J. Gillespie ... [et al.] ; versión española por Aurelio Beltrán Barcelona [etc.] : Reverté, D.L. 1990
- Negro, José Luis. Iniciación al lenguaje químico inorgánico / José Luis Negro. Madrid: Alhambra, 1979
- Nyman, C.J.. Problemas de química general y análisis cualitativo / C.J. Nyman y G.B. King ; traducción de A. López-Lago . - [1a ed. española] Madrid : AC, D.L.1978
- Peterson, W.R. Formulación y nomenclatura química inórganica/ W.R. Peterson. 14 edición Barcelona: Edunsa, 1987
- Sienko, Michell J., Problemas de química / M.J. Sienko Barcelona [etc.]: Reverté, D.L.1987
- Mahan, Bruce H.. Química: curso universitario / Bruce M. [sic] Mahan, Rollie J. Myers; versión en español de María Isabel Pouchan...[et al.]. 4a ed. Wilmington, Delaware [etc]: Addison-Wesley Iberoamericana, cop. 1990
- Strahler, Arthur N.. Geología física / Arthur N. Strahler ; [traducido por Montserrat Domingo de Miró] Barcelona : Omega, D.L. 1992
- Tarbuck, Edward J.. Ciencias de la tierra: una introducción a la geología física / Edward J. Tarbuck, Frederick K. Lutgens; ilustrado por, Dennis Tasa; traducción AMR Traducciones científicas; revisión técnica y adaptación, Manuel Pozo Rodríguez, José Manuel González Casado. 8ª ed. Madrid: Prentice Hall, D.L. 2005