Consulta de Guías Docentes



Curso : 2019/2020

533 - Máster Universitario en Ingeniería de Telecomunicación

60937 - Aprendizaje automático en datos multimedia


Información del Plan Docente

Año académico:
2019/20
Asignatura:
60937 - Aprendizaje automático en datos multimedia
Centro académico:
110 - Escuela de Ingeniería y Arquitectura
Titulación:
533 - Máster Universitario en Ingeniería de Telecomunicación
Créditos:
2.5
Curso:
2
Periodo de impartición:
Primer semestre
Clase de asignatura:
Optativa
Materia:
---

1.Información Básica

1.1.Objetivos de la asignatura

La asignatura y sus resultados previstos responden a los siguientes planteamientos y objetivos:

La asignatura Aprendizaje automático en datos multimedia es una asignatura dentro del módulo de Formación Optativa. La asignatura proporciona al estudiante una visión general de un sistema de reconocimiento de patrones y aprendizaje automático en datos multimedia, desde los aspectos básicos de la clasificación automática de patrones a aspectos más específicos como el tratamiento de señal necesario para la correcta extracción de la información de interés. También se estudian otros aspectos importantes como la eficiencia de la implementación o la paralelización mediante servidores conectados en red, ampliamente utilizados en la actualizad.

Además se estudia la interacción de los parámetros de cada tipo de sistema y su optimización en función de los recursos disponibles: datos de entrenamiento, capacidad de cálculo. La asignatura combina tanto aspectos teóricos como prácticos, de modo que los conceptos teóricos se complementan con un conjunto de prácticas de laboratorio y trabajos en grupo.

La asignatura consta de 2,5 créditos ECTS, que se distribuyen en sesiones presenciales teóricas, clases de problemas, prácticas de laboratorio y trabajos prácticos en grupo.

1.2.Contexto y sentido de la asignatura en la titulación

La asignatura Aprendizaje automático en datos multimedia proporciona a futuros profesionales en el ámbito de las telecomunicaciones las metodologías básicas para comprender los aspectos fundamentales y bloques básicos de un sistema que permite la clasificación y extracción de información de interés en datos multimedia. Partiendo de una introducción al reconocimiento automático de patrones, se van estudiando aspectos importantes de un sistema de aprendizaje automático en datos multimedia como la extracción de información útil mediante el procesado de señal.

La asignatura se apoya en asignaturas previas como Tratamiento de Señal para Comunicaciones, como se ha comentado en el apartado de recomendaciones para cursar la asignatura. La asignatura a su vez contiene conceptos que pueden resultar útiles para otras asignaturas optativas como  Tecnologías del Habla o Tratamiento digital de imagen y vídeo.

1.3.Recomendaciones para cursar la asignatura

El profesorado encargado de esta asignatura pertenece al área de Teoría de la Señal y Comunicacione 

Es recomendable que el alumno que quiera cursar Aprendizaje automático en datos multimedia haya cursado previamente o curse simultáneamente la asignatura Tratamiento de Señal para Comunicaciones. También es recomendable la asignatura optativa Tecnologías del Habla.

2.Competencias y resultados de aprendizaje

2.1.Competencias

Al superar la asignatura, el estudiante será más competente para...

CB6:  Poseer y comprender conocimientos que aporten una base u oportunidad de ser originales en el desarrollo y/o aplicación de ideas, a menudo en un contexto de investigación.

CB7:  Los estudiantes sabrán aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio.

CB8:  Los estudiantes serán capaces de integrar conocimientos y enfrentarse a la complejidad de formular juicios a partir de una información que, siendo incompleta o limitada, incluya reflexiones sobre las responsabilidades sociales y éticas vinculadas a la aplicación de sus conocimientos y juicios.

CB9:  Los estudiantes sabrán comunicar sus conclusiones –y los conocimientos y razones últimas que las sustentan- a públicos especializados y no especializados de un modo claro y sin ambigüedades.

CB10: Los estudiantes poseerán las habilidades de aprendizaje que les permitan continuar estudiando de un modo que habrá de ser en gran medida autodirigido o autónomo.

CG4: Capacidad para el modelado matemático, cálculo y simulación en centros tecnológicos y de ingeniería de empresa, particularmente en tareas de investigación, desarrollo e innovación en todos los ámbitos relacionados con la Ingeniería de Telecomunicación y campos multidisciplinares afines.

CG11: Capacidad para saber comunicar (de forma oral y escrita) las conclusiones- y los conocimientos y razones últimas que las sustentan- a públicos especializados y no especializados de un modo claro y sin ambigüedades.

CG12: Poseer habilidades para el aprendizaje continuado, autodirigido y autónomo.

CE1: Capacidad para aplicar métodos de la teoría de la información, la modulación adaptativa y codificación de canal, así como técnicas avanzadas de procesado digital de señal a los sistemas de comunicaciones y audiovisuales.

CE15:  Capacidad para la integración de tecnologías y sistemas propios de la Ingeniería de Telecomunicación, con carácter generalista, y en contextos más amplios y multidisciplinares como por ejemplo en bioingeniería, conversión fotovoltaica, nanotecnología, telemedicina.

2.2.Resultados de aprendizaje

El estudiante, para superar esta asignatura, deberá demostrar los siguientes resultados...

R1: Conoce los aspectos básicos del reconocimiento de patrones y aprendizaje automático en datos multimedia.

R2: Conoce algunas de las técnicas más importantes para extraer información útil de señales y datos multimedia mediante procesado de señal.

R3: Conoce la metodología para diseñar e implementar un sistema básico de reconocimiento de patrones y aprendizaje automático en datos multimedia.

R4: Comprende los conceptos sobre los que se sustentan algunos sistemas actuales de reconocimiento de patrones y aprendizaje automático en datos multimedia.

2.3.Importancia de los resultados de aprendizaje

La adquisición de las competencias y habilidades propuestas en la asignatura aprendizaje automático en datos multimedia, así como la comprensión de los conceptos teóricos, es muy útil en la actualidad para un Ingeniero de Telecomunicación en el campo audiovisual y multimedia. Todo el conjunto de capacidades adquiridas en esta asignatura será de gran utilidad para su formación.

Los conceptos y técnicas desarrolladas y la formación práctica recibida en esta asignatura facilitarán la comprensión de los bloques integrantes de un sistema de aprendizaje automático en datos multimedia y le proporcionará la base para profundizar en su futuro.

3.Evaluación

3.1.Tipo de pruebas y su valor sobre la nota final y criterios de evaluación para cada prueba

El estudiante deberá demostrar que ha alcanzado los resultados de aprendizaje previstos mediante las siguientes actividades de evaluacion

E1: Prácticas de laboratorio

Las prácticas de laboratorio de la asignatura constituyen el 10% de la calificación final. Su evaluación se realizará a partir de los entregables posteriores a la realización de las mismas aportados por los alumnos y de la actitud y el rendimiento en el laboratorio, que será evaluado de forma continua. Se requiere un nota mínima de 4 sobre 10 en este apartado para superar la asignatura.

E2: Trabajos tutorizados

Los trabajos tutorizados representan el 40% de la calificación final. En la calificación se valorará la capacidad analítica y crítica del alumno para estudiar un problema o aspectos concretos en un sistema de aprendizaje automático en datos multimedia, haciendo uso de las herramientas teóricas y prácticas aprendidas en la asignatura. Además se evaluará la originalidad de las soluciones, la capacidad para trabajar en grupo, la habilidad para coordinar el trabajo y de transmitir la información relevante de forma oral y escrita, ya que el trabajo realizado se presentará a través de un informe común al grupo y de una presentación oral. Se requiere una nota mínima de 4 sobre 10 en este apartado para superar la asignatura.

E3: Examen final

El examen final consistirá en una prueba escrita que representa el 50% de la calificación final.

Se requiere una nota mínima de 4 sobre 10 en la nota del examen final (E3) para superar la asignatura.

E4: Calificación final de la asignatura.

La calificación final (CF) de la asignatura será el resultado de la expresión:

CF= 0.10*E1 + 0.40*E2 + 0.50*E3

con las restricciones comentadas:  E1≥4, E2≥4 y E3≥4

Se dispondrá de una prueba global en cada una de las convocatorias establecidas a lo largo del curso. Las fechas y horarios vendrán determinados por el Centro. 

4.Metodología, actividades de aprendizaje, programa y recursos

4.1.Presentación metodológica general

M1: Clases magistrales participativas.

M8: Prácticas de aula.

M9: Prácticas de laboratorio.

M4: Trabajos prácticos tutorados.

M10: Tutoría.

M11: Evaluación.

4.2.Actividades de aprendizaje

El programa que se ofrece al estudiante para ayudarle a lograr los resultados previstos comprende las siguientes actividades...

A01: Clases magistrales participativas (12 horas). Exposición por parte del profesor de los principales contenidos de la asignatura, combinada con la participación activa del alumnado. Esta actividad se realizará en el aula de forma presencial. Esta metodología, apoyada con el estudio individual del alumno (M14) está diseñada para proporcionar a los alumnos los fundamentos teóricos del contenido de la asignatura.

A02: Prácticas de aula (5 horas)en las que se realizan resolución de problemas y casos prácticos propuestos por el profesor de los fundamentos presentados en las clases magistrales, con posibilidad de exposición de los mismos por parte de los alumnos de forma individual o en grupos autorizada por el profesor. Esta actividad se realizará en el aula de forma presencial.

A03: Prácticas de laboratorio (8 horas). En las que los alumnos realizarán 5 sesiones de prácticas de 2 horas de duración en los Laboratorio de Señales y Sistemas 2.02 del Edificio Ada Byron. En grupos pequeños, se realizan una serie prácticas en las cuales se conocerán los bloques principales del sistema de Aprendizaje automático en datos multimedia que permitan consolidar el conjunto de conceptos teóricos desarrollados a lo largo de las clases magistrales. Esta actividad se realizará en el Laboratorio de forma presencial.

A05: Trabajos prácticos tutorados (15 horas). Realización de un trabajo práctico en grupo y tutorizado por el profesor, basado en los contenidos de la asignatura.

A06: Tutoría. Horario de atención personalizada al alumno con el objetivo de revisar y discutir los materiales y temas presentados en las clases tanto teóricas como prácticas.

A08: Evaluación. Conjunto de pruebas escritas teórico-prácticas y presentación de informes o trabajos utilizados en la evaluación del progreso del estudiante. El detalle se encuentra en la sección correspondiente a las actividades de evaluación.

4.3.Programa

La distribución en unidades temáticas de la teoría de la asignatura será la siguiente:

- Tema 1. Introducción al reconocimiento de patrones

- Tema 2. Modelos de reconocimiento de patrones:

Modelos probabilíisticos

Árboles de decisión

Modelos lineales

Redes neuronales

Modelos de variables ocultas

- Tema 3. Extracción de características

 

4.4.Planificación de las actividades de aprendizaje y calendario de fechas clave

Calendario de sesiones presenciales y presentación de trabajos

El calendario de la asignatura, tanto de las horas presenciales, como las sesiones de laboratorio estará definido por el centro en el calendario académico del curso correspondiente.

 

La asignatura consta de un total de 2,5 créditos ECTS. Las actividades se dividen en clases teóricas, resolución de problemas o casos prácticos en clase, prácticas de laboratorio y la realización de trabajos tutelados relacionados con  el aprendizaje automático en datos multimedia. Las actividades tienen como objetivo facilitar la asimilación de los conceptos teóricos, complementándolos con los prácticos, de forma que se adquieran los conocimientos y las habilidades básicas relacionadas con las competencias previstas en la asignatura.

Las fechas de inicio y finalización del curso y las horas concretas de impartición de la asignatura así como las fechas de realización de las prácticas de laboratorio e impartición de seminarios se harán públicas atendiendo a los horarios fijados por la Escuela.


Curso : 2019/2020

533 - Master's Degree in Telecommunications Engineering

60937 - Machine learning in multimedia data


Información del Plan Docente

Academic Year:
2019/20
Subject:
60937 - Machine learning in multimedia data
Faculty / School:
110 -
Degree:
533 - Master's Degree in Telecommunications Engineering
ECTS:
2.5
Year:
2
Semester:
First semester
Subject Type:
Optional
Module:
---

1.General information

1.1.Aims of the course

1.2.Context and importance of this course in the degree

1.3.Recommendations to take this course

2.Learning goals

2.1.Competences

2.2.Learning goals

2.3.Importance of learning goals

3.Assessment (1st and 2nd call)

3.1.Assessment tasks (description of tasks, marking system and assessment criteria)

4.Methodology, learning tasks, syllabus and resources

4.1.Methodological overview

The methodology followed in this course is oriented towards achievement of the learning objectives. A wide range of teaching and learning tasks are implemented, such as Lectures (M1), practice sessions (M8), lab sessions (M9), mini-projects (M4), tutorials (M10), and assessment (M11).

4.2.Learning tasks

The course includes the following learning tasks:

  • A01 Lectures (12 hours). The teacher presents the theory and students participate actively. This activity will take place in the classroom. This methodology is designed to provide students with the theoretical aspects of the course and requires student's autonomous work.
  • A02 Practice sessions (5 hours). The teacher proposes problems to be solved using the concepts presented in the lectures, with the possibility of students presenting them individually or in groups. This activity will take place in the classroom.
  • A03 Lab sessions (8 hours). There will be 4 sessions of 2 hours held in the Signals and Systems Laboratory L2.02 (Ada Byron building). The students are provided with a  series of problems to solve, which include the main blocks of a machine learning system for multimedia data, to consolidate the theoretical concepts from the lectures. 
  • A05 Mini-project (15 hours). The students implement some of the theory concepts using a multimedia dataset. Then they write a report and make an oral presentation.
  • A07 Tutorials. Teacher's office hours to answers questions with the aim of reviewing and discussing the materials and topics presented in both lectures and practice sessions.
  • A08 Assessment. A set of reports, the project and the final test.

4.3.Syllabus

The course will address the following topics:

- 1. Introduction to pattern recognition

- 2. Pattern recognition models:

Probabilistic models

Decision trees

Linear models

Neural networks

Hidden variable models

- 3. Feature extraction

 

4.4.Course planning and calendar

Further information concerning the timetable, classroom, office hours, assessment dates and other details regarding this course, will be provided on the first day of class or please refer to the EINA website.