Consulta de Guías Docentes



Curso : 2019/2020

581 - Graduado en Ingeniería de Tecnologías y Servicios de Telecomunicación

30372 - Matemáticas para la telecomunicación


Información del Plan Docente

Año académico:
2019/20
Asignatura:
30372 - Matemáticas para la telecomunicación
Centro académico:
110 - Escuela de Ingeniería y Arquitectura
Titulación:
581 - Graduado en Ingeniería de Tecnologías y Servicios de Telecomunicación
Créditos:
6.0
Curso:
1
Periodo de impartición:
Segundo semestre
Clase de asignatura:
Obligatoria
Materia:
---

1.Información Básica

1.1.Objetivos de la asignatura

La asignatura y sus resultados previstos responden a los siguientes planteamientos y objetivos:

La finalidad es que el estudiante consolide los aspectos básicos de las matemáticas, aprenda a relacionarlos para adquirir la capacidad de  adaptarlos a la resolución de los problemas propios de la Ingeniería de Telecomunicación.

Es una prioridad de la asignatura que el estudiante sea capaz de afrontar un problema de forma rigurosa, analizando las técnicas y estrategias disponibles para seleccionar la más eficaz y analizar los resultados obtenidos.

1.2.Contexto y sentido de la asignatura en la titulación

Matemáticas para Telecomunicación es una asignatura de 6 créditos ECTS que se imparte durante el segundo cuatrimestre del primer curso del Grado. Se trata de un curso básico con diversos contenidos matemáticos en el que se describen las ecuaciones diferenciales lineales, la transformada de Laplace y las series y transformada de Fourier; se presentan métodos numéricos para la resolución de problemas de valor inicial y de contorno, así como algunos modelos de Telecomunicación en los que se utilizan las matemáticas desarrolladas.

1.3.Recomendaciones para cursar la asignatura

Para cursar esta asignatura se recomienda conocer los conceptos y saber aplicar las técnicas contenidas en las asignaturas de Álgebra y Cálculo impartidas en el primer cuatrimestre.

 

El estudio y trabajo continuado, desde el primer día del curso, son fundamentales e imprescindibles para superar con el máximo aprovechamiento la asignatura.

Es importante y conveniente resolver cuanto antes las dudas que puedan surgir, para lo cual el estudiante cuenta con la asesoría del profesor, tanto durante las clases como en las horas de tutoría destinadas a ello. Pueden realizarse consultas puntuales a través del correo electrónico.

2.Competencias y resultados de aprendizaje

2.1.Competencias

Competencias específicas

CFB1 - Capacidad para la resolución de los problemas matemáticos que puedan plantearse en la ingeniería. Aptitud para aplicar los conocimientos sobre: ecuaciones diferenciales; problemas de valor inicial y de contorno; métodos numéricos y algorítmicos numéricos.

Competencias genéricas

Resolver problemas y tomar decisiones con creatividad, rigor y razonamiento crítico.

Comunicar y transmitir habilidades y destrezas en castellano de forma oral y escrita.

Trabajar en un grupo multidisciplinar y en un entorno multilingüe.

Aprender de forma continuada y desarrollar estrategias de aprendizaje autónomo.

2.2.Resultados de aprendizaje

El estudiante, para superar esta asignatura, tiene que ser capaz de

  1. Usar los métodos elementales para resolver ecuaciones diferenciales de primer orden.
  2. Conocer las propiedades de la transformada de Laplace y su aplicación a la resolución de ecuaciones diferenciales e integro-diferenciales.
  3. Conocer los desarrollos en serie de Fourier de funciones periódicas y su aplicación a la resolución de problemas de contorno
  4. Conocer las propiedades de la transformada de Fourier y su aplicación a la resolución de ecuaciones diferenciales.
  5. Utilizar software para resolver problemas relacionados con las ecuaciones diferenciales y reconstrucción de señales.

2.3.Importancia de los resultados de aprendizaje

Alcanzados los resultados de aprendizaje, el estudiante debe ser capaz de analizar un problema y seleccionar la técnica más adecuada para resolverlo de forma eficaz, interpretar los resultados obtenidos y cuestionar su validez.

Debe ser capaz de analizar y comunicar con rigor y precisión los resultados obtenidos, su alcance y sus limitaciones.

Debe ser capaz de relacionar los conceptos desarrollados en la asignatura con los contenidos específicos de otras asignaturas del Grado. 

3.Evaluación

3.1.Tipo de pruebas y su valor sobre la nota final y criterios de evaluación para cada prueba

El estudiante podrá escoger entre una evaluación continuada o una evaluación global.

  1. La evaluación global consta de una prueba global consistente en un examen con cuestiones teórico-prácticas, problemas y ejercicios correspondientes a los temas desarrollados en las clases magistrales y en las prácticas. Se valorará la corrección de las respuestas, desarrollos y resultados.
  2. La evaluación continuada consta de las siguientes pruebas:
  • Dos exámenes parciales (P1 y P2). La prueba P1 corresponde a los 2 primeros temas y la P2 a los tres últimos.
  • Un trabajo académico (TA). El estudiante realizará varias tareas que consistirán en unos ejercicios teórico-prácticos relacionados con las prácticas.
  • Un examen final dividido en dos partes (F1 y F2), la primera sobre los temas 1 y 2 y la segunda sobre los temas 3, 4 y 5.

La calificación de la asignatura será

  • Si  NP1 5  y   NP2 5:

Calificación final= NP1 * 0,32 + NP2* 0,43 + NTA * 0,25

 

Si el estudiante desea obtener una mayor calificación, podrá realizar el examen final.

 

  • Si NP1 < 5   y  NP2 < 5, el estudiante deberá realizar el examen final y su calificación será

Calificación final= NF1 * 0,32 + NF2* 0,43 + NTA * 0,25

 

  • Si NP1 ≥ 5  y  NP2 < 5, el estudiante se presentará al examen final y su calificación será

Calificación final= máx(NF1, NP1) * 0,32 + NF2* 0,43 + NTA * 0,25

 

  • Si NP1 < 5  y  NP2  ≥ 5, el estudiante se presentará al examen final y su calificación será

Calificación final= NF1 * 0,32 + máx(NP2,NF2)* 0,43 + NTA * 0,25

  

NP1: nota del primer parcial sobre  10

NP2: nota del segundo parcial sobre 10

NF1: nota de la primera parte del examen final sobre 10

NF2: nota de la segunda parte del examen final sobre 10

NTA: nota del trabajo académico sobre 10

 

 

 

4.Metodología, actividades de aprendizaje, programa y recursos

4.1.Presentación metodológica general

El proceso de aprendizaje que se ha diseñado para esta asignatura se basa en lo siguiente:

Trabajo continuo del alumno: estudio de la teoría, consulta de la documentación y la bibliografía propuestas, realización de problemas y ejercicios y consulta de dudas.

Clases magistrales en las que se desarrollarán los contenidos, ilustrándolos con  ejemplos y contraejemplos suficientes para facilitar su comprensión, y se  realizarán ejercicios en grupo.

Prácticas en las que con ayuda del ordenador se resolverán problemas propios de la asignatura y se implementarán métodos  numéricos usando software.

Sesiones de problemas dirigidos en las que, de forma participativa, se resolverán problemas que exijan la comprensión  de los conceptos y las relaciones entre  conceptos y técnicas de los distintos temas de la asignatura.

4.2.Actividades de aprendizaje

El programa que se ofrece al estudiante para ayudarle a lograr los resultados previstos comprende las siguientes actividades:

 

Tipo I: Clase magistral (42 horas) Se dedicarán 3 horas a la semana a las clases de teoría y problemas. Se tratará de lecciones de tipo magistral en las que se presentarán los contenidos y resultados teóricos, complementados con la resolución de problemas y ejercicios prácticos con una participación activa del estudiante.

 

Tipo II: Clases de resolución de problemas (6 horas). El grupo se dividirá en 2, utilizando 2 aulas al mismo tiempo. Usando las aulas y horarios establecidos por el centro. Se presentarán a los alumnos modelos, con problemas y ejercicios, en los que aparecen algunos de los aspectos matemáticos desarrollados en la asignatura. Algunos de ellos se resolverán en clase y otros servirán como material de trabajo autónomo recomendado para el alumno.

 

Tipo III: Clases prácticas (6 sesiones de 2 horas cada una). Con los alumnos distribuidos en tres subgrupos se desarrollarán en el aula y horario fijados por la dirección del centro. En estas sesiones los alumnos usarán software para realizar los ejercicios propuestos.

4.3.Programa

Tema 1. Ecuaciones diferenciales lineales.

Tema 2. Transformada de Laplace.

Tema 3. Series de Fourier.

Tema 4. Transformada de Fourier.

Tema 5. Aplicaciones a las Ecuaciones en Derivadas Parciales.

 

 

4.4.Planificación de las actividades de aprendizaje y calendario de fechas clave

Las clases magistrales y de problemas en el aula y las sesiones de prácticas en el laboratorio se imparten según el horario establecido por el centro (disponible en su página web).

Cada profesor informará de su horario de tutorías.

El resto de actividades se planificará en función del número de alumnos y se dará a conocer con la suficiente antelación.

Podrá consultarse en http://add.unizar.es

4.5.Bibliografía y recursos recomendados

http://biblos.unizar.es/br/br_citas.php?codigo=30372&year=2019


Curso : 2019/2020

581 - Bachelor's Degree in Telecomunications Technology and Services Engineering

30372 - Mathematics for Telecommunications


Información del Plan Docente

Academic Year:
2019/20
Subject:
30372 - Mathematics for Telecommunications
Faculty / School:
110 -
Degree:
581 - Bachelor's Degree in Telecomunications Technology and Services Engineering
ECTS:
6.0
Year:
1
Semester:
Second semester
Subject Type:
Compulsory
Module:
---

1.General information

1.1.Aims of the course

1.2.Context and importance of this course in the degree

1.3.Recommendations to take this course

2.Learning goals

2.1.Competences

2.2.Learning goals

2.3.Importance of learning goals

3.Assessment (1st and 2nd call)

3.1.Assessment tasks (description of tasks, marking system and assessment criteria)

4.Methodology, learning tasks, syllabus and resources

4.1.Methodological overview

The learning process that has been designed for this subject is based on the following:

Continuous work of the student; study of the theory using the provides notes and the bibliography; realization of problems and exercises; query and resolution of doubts.

Master classes in which the contents will be developed, illustrating them with examples and counter-examples sufficient, to facilitate their comprehension; exercises in group will be carried out.

Practices in which, with the help of the computer, problems on different questions will be solved and numerical methods will be implemented using software.

Sessions of problems in which, in a participative way, problems that demand the comprehension of the concepts and the relations between concepts and techniques of the different subjects will be solved.

4.2.Learning tasks

The program offered to the student to help him achieve the expected results includes the following activities:

Type I: Master class (42 hours). Three hours by week will be devoted to theory and problem classes. These will be master classes in which the contents and theoretical results will be presented, complemented with the resolution of problems and practical exercises with an active participation of the student.

Type II: Problem’s classes (6 hours). Models will be presented to students, with problems and exercises, in which some of the mathematical aspects appear of the subject. Some of them will be solved in class and others will serve as autonomous work material recommended for the student.

Type III: Practical classes (6 sessions of 2 hours each). With the students distributed in three subgroups, they will be developed in the classroom and schedule set by the center. In these sessions the students will use software to perform the proposed exercises.

4.3.Syllabus

Theme 1. Linear Differential Equations.

Theme 2.  The Laplace Transform.

Theme 3. Fourier Series.

Theme 4. Fourier Transform.

Theme 5. Application to Partial Differential Equations.

 

 

4.4.Course planning and calendar

Master classes and problems in the classroom and laboratory sessions are taught according to the schedule established by the center (available on their website).

Each professor will inform about his tutoring schedule.

The rest of the activities will be planned according to the number of students and will be announced in advance.

The information will be available at http://add.unizar.es

4.5.Bibliography and recommended resources

http://biblos.unizar.es/br/br_citas.php?codigo=30372&year=2019