Curso Académico:
2023/24
633 - Máster Universitario en Ingeniería Biomédica
69706 - Modelado del comportamiento de tejidos músculo-esqueléticos
Información del Plan Docente
Año académico:
2023/24
Asignatura:
69706 - Modelado del comportamiento de tejidos músculo-esqueléticos
Centro académico:
110 - Escuela de Ingeniería y Arquitectura
Titulación:
633 - Máster Universitario en Ingeniería Biomédica
Créditos:
3.0
Curso:
1
Periodo de impartición:
Segundo semestre
Clase de asignatura:
Optativa
Materia:
---
1. Información básica de la asignatura
La asignatura debe implicar un entendimiento del comportamiento mecánico de los tejidos biológicos ante diferentes condiciones fisiológicas y patológicas. Además se dotará al estudiante de las habilidades necesarias para definir un modelo de cualquier estructura biológica teniendo en cuenta sus principales características desde un punto de vista mecánico (grandes deformaciones, anisotropía, dependencia de la velocidad de deformación, etc.). Así mismo el estudiante tiene que saber comprender sus limitaciones e interpretar los resultados que se pueden obtener del modelado.
Estos planteamientos y objetivos están alineados con algunos de los Objetivos de Desarrollo Sostenible, ODS, de la Agenda 2030 (https://www.un.org/sustainabledevelopment/es/) y determinadas metas concretas, de tal manera que la adquisición de los resultados de aprendizaje de la asignatura proporciona capacitación y competencia al estudiante para contribuir en cierta medida a su logro:
- Objetivo 3: Garantizar una vida sana y promover el bienestar para todos en todas las edades. Meta 3.6: Para 2020, reducir a la mitad el número de muertes y lesiones causadas por accidentes de tráfico en el mundo.
- Objetivo 9: Industria, innovación e infraestructuras. Meta 9.5: Aumentar la investigación científica y mejorar la capacidad tecnológica de los sectores industriales de todos los países, en particular los países en desarrollo, entre otras cosas fomentando la innovación y aumentando considerablemente, de aquí a 2030, el número de personas que trabajan en investigación y desarrollo por millón de habitantes y los gastos de los sectores público y privado en investigación y desarrollo. Meta 9.b: Apoyar el desarrollo de tecnologías, la investigación y la innovación nacionales en los países en desarrollo, incluso garantizando un entorno normativo propicio a la diversificación industrial y la adición de valor a los productos básicos, entre otras cosas.
2. Resultados de aprendizaje
Competencias
- Poseer y comprender conocimientos que aporten una base u oportunidad de ser originales en el desarrollo y/o aplicación de ideas, a menudo en un contexto de investigación (CB. 6)
- Que los estudiantes sepan aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio (CB.7)
- Que los estudiantes sean capaces de integrar conocimiento y enfrentarse a la complejidad de formular juicios a partir de una información que, siendo incompleta o limitada, incluya reflexiones sobre las responsabilidades sociales y éticas vinculadas a la aplicación de sus conocimientos y juicios (CB.8)
- Que los estudiantes sepan comunicar sus conclusiones y los conocimientos y razones últimas que las sustentan a públicos especializados y no especializados de un modo claro y sin ambigüedades (CB.9)
- Que los estudiantes posean las habilidades de aprendizaje que les permitan continuar estudiando de un modo que habrá de ser en gran medida autodirigido o autónomo (CB.10)
- Poseer las aptitudes, destrezas y método necesarios para la realización de un trabajo de investigación y/o desarrollo de tipo multidisciplinar en cualquier área de la Ingeniería Biomédica (CG.1)
- Ser capaz de usar las técnicas, habilidades y herramientas de la Ingeniería necesarias para la resolución de problemas del ámbito biomédico y biológico (CG.2)
- Ser capaz de aprender de forma continuada y desarrollar estrategias de aprendizaje autónomo (CG.4)
- Ser capaz de gestionar y utilizar bibliografía, documentación, legislación, bases de datos, software y hardware específicos de la ingeniería biomédica (CG.5)
- Ser capaz de analizar, diseñar y evaluar soluciones a problemas del ámbito biomédico mediante conocimientos y tecnologías avanzados de biomecánica, biomateriales e ingeniería de tejidos. (CO.3)
Resultados de aprendizaje
- Saber las características principales que definen el comportamiento mecánico de los tejidos del sistema músculo-esquelético.
- Identificar los modelos matemáticos de comportamiento (elástico, hiperelástico, inelástico, etc.) que mejor reproducen las propiedades de cada tipo de tejido (hueso, cartílago, ligamento, músculo) ante cada tipo de carga.
- Saber aplicar la metodología de elementos finitos para resolver numéricamente el comportamiento de estructuras biológicas.
3. Programa de la asignatura
El programa que se ofrece al estudiante para ayudarle a lograr los resultados previstos comprende las siguientes lecciones:
1. Sistema músculo-esquelético: Modelado computacional de la biomecánica y mecanobiología de los tejidos biológicos.
2. Tejido óseo
3. Tejido conjuntivo denso. Ligamentos y tendones
4. Tejido músculo-esquelético
4. Actividades académicas
El proceso de aprendizaje que se ha diseñado para esta asignatura se basa en las siguientes actividades:
A01 Clase magistral participativa (18 horas).Exposición por parte del profesor de los principales contenidos de la asignatura.
A03 Prácticas de ordenador (8 horas).
Se realizarán varias prácticas de ordenador. Para el desarrollo de las prácticas se tendrán unos guiones que el alumno deberá leerse antes de la práctica, planteándose una serie de actividades a realizar durante las mismas.
A05 Realización de actividades/trabajos prácticos de aplicación o investigación.
Conforme se desarrolle el curso se irán proponiendo actividades y trabajos relacionados con la asignatura y con las prácticas de ordenador que se vayan llevando a cabo.
A06: Tutoría. Horario de atención personalizada al alumno con el objetivo de revisar y discutir los materiales y temas presentados en las clases tanto teóricas como prácticas.
A08: Evaluación. Conjunto de pruebas escritas teórico-prácticas y entrega de informes o de las actividades y trabajos utilizados en la evaluación del progreso del estudiante. El detalle se encuentra en la sección correspondiente a las actividades de evaluación. (1 horas)
Al resto de actividades (incluidos trabajos tutorados-A05, evaluaciones-A08, entregables, y estudio personal) le corresponden 48 horas.
5. Sistema de evaluación
El estudiante deberá demostrar que ha alcanzado los resultados de aprendizaje previstos mediante las siguientes actividades de evaluación:
Examen escrito, con puntuación de 0 a 10 puntos, común para todos los grupos de la asignatura. La prueba constará de diversas cuestiones teórico-prácticas.
- E2: Prácticas de ordenador, actividades y trabajos tutorizados (60%).
Puntuación de 0 a 10 puntos. En la evaluación de las prácticas, actividades y trabajos tutorizados (60%) se tendrá en cuenta tanto la memoria presentada, como la idoneidad y originalidad de los resultados propuestos. En el guión de las prácticas se propondrán una serie de tareas/actividades y los trabajos estarán directamente relacionados con cada una de las sesiones prácticas.
El alumno ha de obtener una puntuación mínima total de 4.5 puntos sobre 10 en cada una de las actividades de evaluación (Examen y prácticas de ordenador y trabajos tutorizados). En caso de no obtenerse este mínimo, se dispondrá de una prueba global en cada una de las convocatorias establecidas a lo largo del curso, en las fechas y horarios determinados por la Escuela. La prueba global consistirá en un examen con cuestiones teórico prácticas y cuestiones relativas a las prácticas.