Curso Académico:
2022/23
60035 - Física estadística de fenómenos críticos y sistemas complejos
Información del Plan Docente
Año académico:
2022/23
Asignatura:
60035 - Física estadística de fenómenos críticos y sistemas complejos
Centro académico:
100 - Facultad de Ciencias
Titulación:
538 - Máster Universitario en Física y Tecnologías Físicas
589 - Máster Universitario en Física y Tecnologías Físicas
Créditos:
5.0
Curso:
1
Periodo de impartición:
Segundo semestre
Clase de asignatura:
Optativa
Materia:
---
1.1. Objetivos de la asignatura
La asignatura y sus resultados previstos responden a los siguientes planteamientos y objetivos:
El estudio de la teoría física actual de las transiciones de fase y los fenómenos críticos proporciona al estudiante de física una oportunidad única de combinar discusiones de soluciones exactas, simulaciones numéricas, resultados experimentales, ideas básicamente intuitivas (como p.ej., esquemas de grupo de renormalización) y métodos de la teoría de campos, de un modo que ilumina las similaridades y diferencias, así como las fortalezas y debilidades de estos acercamientos. Adicionalmente, se pone especial énfasis en la amplia generalidad de la teoría fuera del dominio de los sistemas físicos tradicionales, en campos científicos tan diversos como la dinámica de poblaciones, neurociencias, y sistemas sociales, tecnológicos y biológicos.
Estos planteamientos y objetivos están alineados con los siguientes Objetivos de Desarrollo Sostenible (ODS) de la Agenda 2030 de Naciones Unidas (https://www.un.org/sustainabledevelopment/es/), de tal manera que la adquisición de los resultados de aprendizaje de la asignatura proporciona capacitación y competencia para contribuir en cierta medida a su logro:
- ODS 4 Educación de calidad.
1.2. Contexto y sentido de la asignatura en la titulación
La formación en Física Estadística en los estudios de Grado se limita habitualmente al uso básico de los formalismos (canónicos generalizados) de la mecánica estadística en sistemas ideales (de componentes no interactuantes) tanto clásicos como cuánticos. Para un graduado en Física típico, el conocimiento sobre las transiciones de fase suele limitarse a la ecuación de Van der Waals para la transición líquido-gas (desde la perspectiva de la termodinámica clásica), la condensación de Bose-Einstein y la transición ferro-paramagnética (a partir tanto de simulaciones Monte Carlo como mediante la aproximación de campo medio) del modelo de Ising. La extensión de la mecánica estadística a sistemas con interacciones entre sus componentes y la teoría moderna de las transiciones de fase, así como una breve incursión en la física de sistemas complejos interdisciplinares se consideran como complementos esenciales en la formación de un físico del siglo XXI.
1.3. Recomendaciones para cursar la asignatura
Se trata de un curso avanzado de Física Estadística, esencialmente centrado en Transiciones de Fase y Fenómenos Críticos, así como en Física Interdisciplinar de Sistemas Complejos. Si bien su contenido es fundamentalmente de carácter teórico, el curso está diseñado para atraer tanto a experimentales como a teóricos. Se recomienda vivamente que el estudiante posea una adecuada formacion en Física Cuántica, Termodinámica y Física Estadística.
2. Competencias y resultados de aprendizaje
2.1. Competencias
Al superar la asignatura, el estudiante será más competente para:
- Consolidar los conocimientos avanzados y la interrelación entre los diversos campos de la Física y las Tecnología Físicas (CE3).
- Integrar conocimientos, enfrentarse a la complejidad y formular juicios con información limitada en el ámbito de la Física y de sus Tecnologías (CE4).
- Profundizar en el análisis, tratamiento e interpretación de datos experimentales (CE5).
- Capacidad de trabajo y comunicación en un campo interdisciplinar.
- Comprender la fenomenología general de los fenómenos críticos.
- Comprender el fenómeno de universalidad y su aplicación en el razonamiento físico.
- Conocer las aproximaciones adecuadas en el análisis de fenómenos críticos.
- Entender el concepto de invariancia de escala y su aplicación en la teoría de fenómenos críticos.
- Comprender la extensión de los conceptos de universalidad y escalado a distintas ciencias.
- Reconocer el carácter común subyacente a diversos campos del conocimiento, de diversos conceptos, modelos y técnicas de la Física Estadística.
2.2. Resultados de aprendizaje
El estudiante, para superar esta asignatura, deberá demostrar los siguientes resultados:
- El estudiante ha de ser capaz de formular y resolver energías libres en la aproximación de campo medio, así como calcular los exponentes críticos de las magnitudes termodinámicas y físico-estadísticas en esta aproximación.
- El estudiante ha de ser capaz de calcular la función de partición de sistemas-modelo apropiados usando el método de la matriz de transferencia.
- El estudiante ha de ser capaz de diseñar transformaciones del grupo de renormalización (RG) en el espacio de posiciones en modelos sencillos (p.ej., modelo de Ising, percolación, etc.).
- El estudiante ha de ser capaz de analizar diagramas de flujo (y mapas) de RG y calcular exponentes críticos en base a las técnicas de RG.
- El estudiante ha de ser capaz de construir modelos de fenómenos diversos fuera de los dominios de los sistemas físicos tradicionales y analizarlos usando las técnicas y procedimientos de la Física Estadística.
2.3. Importancia de los resultados de aprendizaje
Como se ha señalado en párrafos previos, el carácter troncal de la teoría de la física estadística y la amplitud de sus ubícuitas aplicaciones confiere a esta asignatura un papel altamente formativo, y de gran valor desde la perspectiva de la formación de investigadores.
3.1. Tipo de pruebas y su valor sobre la nota final y criterios de evaluación para cada prueba
El estudiante deberá demostrar que ha alcanzado los resultados de aprendizaje previstos mediante las siguientes actividades de evaluacion
Evaluación continua del aprendizaje del estudiante mediante la resolución de problemas, cuestiones y otras actividades propuestas por el profesorado de la asignatura. Esta actividad supondrá un 50% de la nota final.
Realización de una prueba teórico-práctico a lo largo del curso 20%.
Evaluación continua de la adquisición de competencias en desarrollos
analíticos y técnicas computacionales mediante elaboración de un trabajo de
curso 30%.
Superación de la asignatura mediante una prueba global única
Aunque el curso está diseñado para estudiantes que puedan asistir presencialmente a las clases magistrales, habrá un examen sobre cuestiones teóricas y ejercicios para los alumnos imposibilitados para asistir, que también podrán realizar aquéllos que no superen las actividades previas de evaluación
4. Metodología, actividades de aprendizaje, programa y recursos
4.1. Presentación metodológica general
El proceso de aprendizaje que se ha diseñado para esta asignatura se basa en lo siguiente:
Principalmente orientado a la formación de futuros investigadores, los estudiantes asistirán a las clases magistrales y estudiarán y presentarán en público (con discusión en grupo) artículos de investigación seleccionados para adquirir los conocimientos necesarios sobre los contenidos de la asignatura (3 ECTS); resolverán ejercicios (tanto personalmente como en grupo) relacionados con los contenidos de la asignatura (1,2 ECTS); y llevarán a cabo un trabajo temático a lo largo del curso (0,8 ECTS).
4.2. Actividades de aprendizaje
El programa que se ofrece al estudiante para ayudarle a lograr los resultados previstos comprende las siguientes actividades:
- Clases magistrales sobre los principales temas del curso:
- Sesiones interactivas de resolución de problemas.
- Trabajo personal (y/o en grupo) del alumno en la resolución de ejercicios propuestos.
- Estudio, exposición oral, y discusión en grupo de artículos de investigación seleccionados.
Las actividades docentes y de evaluación se llevarán a cabo de modo presencial salvo que, debido a la situación sanitaria, las disposiciones emitidas por las autoridades competentes y por la Universidad de Zaragoza obliguen a realizarlas de forma telemática o semi-telemática con aforos reducidos rotatorios.
4.3. Programa
- Introducción a las transiciones de fase. Conceptos básicos
- Revisión de Termodinámica y Mecánica Estadística.
- Diagramas de fase y transiciones de fase
- Termodinámica de las Transiciones de Fase
- Teorías de Campo Medio
- Fenómenos críticos
- Teoría de Landau-Ginzburg
- Modelos estadísticos para las Transiciones de Fase
- Escalado y Universalidad: grupo de renormalización
- Temas emergentes en transiciones de fase de Física de la Materia Condensada: materiales magnetocalóricos, multiferroicos, cristales líquidos, transiciones de fase topológicas, cuánticas, …
- Sistemas Complejos Interdisciplinares: transiciones de fase en teoría de redes, epidemias, sincronización, dinámica de poblaciones, modelos de interacción social, dinámica evolutiva de juegos.
4.4. Planificación de las actividades de aprendizaje y calendario de fechas clave
Calendario de sesiones presenciales y presentación de trabajos
El calendario definitivo ha de hacerse. Se anunciará con suficiente antelación.
Las actividades darán comienzo y finalizarán en las fechas indicadas a tal efecto por la Facultad de Ciencias.
- Clases: 3-4 sesiones por semana. Fechas a especificar.
- Sesiones de evaluación. A decidir.