Curso Académico:
2022/23
424 - Graduado en Ingeniería Mecatrónica
28833 - Diseño y mantenimiento de sistemas mecatrónicos
Información del Plan Docente
Año académico:
2022/23
Asignatura:
28833 - Diseño y mantenimiento de sistemas mecatrónicos
Centro académico:
175 - Escuela Universitaria Politécnica de La Almunia
Titulación:
424 - Graduado en Ingeniería Mecatrónica
Créditos:
6.0
Curso:
4
Periodo de impartición:
Primer semestre
Clase de asignatura:
Obligatoria
Materia:
---
1.1. Objetivos de la asignatura
La asignatura y sus resultados previstos responden a los siguientes planteamientos y objetivos:
- Mostrar los fundamentos y componentes principales de los sistemas mecatrónicos, así como su contexto dentro del desarrollo tecnológico actual.
- Dar a conocer la metodología del desarrollo de sistemas mecatrónicos, junto con las fases a aplicar en el diseño mecatrónico desde la concepción inicial, pasando por el desarrollo de prototipos, hasta la concreción final de dicho sistema.
- Diseñar sistemas mecatrónicos de aplicación general integrando conocimientos de diseño electrónico, mecánico, programación, máquinas eléctricas y control.
- Estudiar los tipos de mantenimiento aplicables a los sistemas mecatrónicos, así como el desarrollo un plan de mantenimiento acorde a cada tipología o características particulares del sistema mecatrónico en cuestión.
- Indicar las fases que hay que tener en un cuanta al realizar un estudio de seguridad en sistemas mecatrónicos.
- Análisis de como la seguridad en un sistema mecatrónica afecta al mantenimiento y como ambos dos a su vez al proceso de diseño.
- Dar a conocer la normativa existente sobre diseño, mantenimiento y seguridad de sistemas mecatrónicos.
Estos planteamientos y objetivos están alineados con los siguientes Objetivos de Desarrollo Sostenible (ODS) de la Agenda 2030 de Naciones Unidas (https://www.un.org/sustainabledevelopment/es/), de tal manera que la adquisición de los resultados de aprendizaje de la asignatura proporciona capacitación y competencia para contribuir en cierta medida a su logro:
- Objetivo 9: Construir infraestructuras resilientes, promover la industrialización sostenible y fomentar la innovación.
Y, en concreto, con la meta:
- Meta 9.b: Apoyar el desarrollo de tecnologías, la investigación y la innovación nacionales en los países en desarrollo, incluso garantizando un entorno normativo propicio a la diversificación industrial y la adición de valor a los productos básicos, entre otras cosas.
1.2. Contexto y sentido de la asignatura en la titulación
La asignatura de Diseño y Mantenimiento de Sistemas Mecatrónicos, forma parte del Grado en Ingeniería Mecatrónica que imparte la EUPLA, enmarcándose dentro del grupo de asignaturas que conforman el módulo denominado Mecánica y dentro de este a la materia de Diseño y Cálculo. Se trata de una asignatura de cuarto curso ubicada en el séptimo semestre y de carácter obligatorio, con una carga lectiva de 6 créditos ECTS.
Dicha asignatura implica un impacto muy importante en la adquisición de las competencias de la titulación, además de aportar una formación útil y especifica en el desempeño de las funciones del Ingeniero/a Mecatrónico/a.
1.3. Recomendaciones para cursar la asignatura
El desarrollo de la asignatura de Diseño y Mantenimiento de Sistemas Mecatrónico pone en juego conocimientos y estrategias procedentes de asignaturas relacionados con las áreas de la ELECTRÓNICA, MECÁNICA, CONTROL e INFORMÁTICA.
En relación con lo anterior, en el primer, segundo y tercer curso de la titulación y de forma anticipada se cursan asignaturas relacionadas con dichas materias, proporcionando los conocimientos básicos para poder seguir sin ningún tipo de restricción la evolución de la asignatura en cuestión.
Esta asignatura no posee ningún prerrequisito normativo ni requiere de conocimientos específicos complementarios. Por tanto, lo anteriormente expresado se entiende desde un punto de vista formal, aunque es necesario tener claro que se necesita una base formativa adecuada en las disciplinas anteriormente indicadas.
2. Competencias y resultados de aprendizaje
2.1. Competencias
Al superar la asignatura, el estudiante será más competente para...
- GI03: Conocimientos en materias básicas y tecnológicas, que les capacite para el aprendizaje de nuevos métodos y teorías, y les dote de versatilidad para adaptarse a nuevas situaciones.
- GI04: Capacidad de resolver problemas con iniciativa, toma de decisiones, creatividad, razonamiento crítico y de comunicar y transmitir conocimientos, habilidades y destrezas en el campo de la Ingeniería Industrial y en particular en el ámbito de la electrónica industrial.
- GI06: Capacidad para el manejo de especificaciones, reglamentos y normas de obligado cumplimiento.
- GI10: Capacidad de trabajar en un entorno multilingüe y multidisciplinar.
- GC01:Capacidad para integrar y aplicar conocimientos mecánicos, electrónicos y de control en el diseño, desarrollo y mantenimiento de productos, equipos o instalaciones industriales.
- GC02: Interpretar datos experimentales, contrastarlos con los teóricos y extraer conclusiones.
- GC03: Capacidad para la abstracción y el razonamiento lógico.
- GC04: Capacidad para aprender de forma continuada, autodirigida y autónoma.
- GC05: Capacidad para evaluar alternativas.
- GC06: Capacidad para adaptarse a la rápida evolución de las tecnologías.
- GC07: Capacidad para liderar un equipo así como de ser un miembro comprometido del mismo.
- GC08: Capacidad para localizar información técnica, así como su comprensión y valoración.
- GC09: Actitud positiva frente a las innovaciones tecnológicas.
- GC10: Capacidad para redactar documentación técnica y para presentarla con ayuda de herramientas informáticas adecuadas.
- GC11: Capacidad para comunicar sus razonamientos y diseños de modo claro a públicos especializados y no especializados.
- GC14: Capacidad para comprender el funcionamiento y desarrollar el mantenimiento de equipos e instalaciones mecánicas, eléctricas y electrónicas.
- GC15: Capacidad para analizar y aplicar modelos simplificados a los equipos y aplicaciones tecnológicas que permitan hacer previsiones sobre su comportamiento.
- GC16: Capacidad para configurar, simular, construir y comprobar prototipos de sistemas electrónicos y mecánicos.
- GC17: Capacidad para la interpretación correcta de planos y documentación técnica.
- EM05: Conocimientos y capacidades para el diseño y mantenimiento de sistemas mecatrónicos.
2.2. Resultados de aprendizaje
El estudiante, para superar esta asignatura, deberá demostrar los siguientes resultados...
- Saber explicar los fundamentos y componentes principales de los sistemas mecatrónicos, así como la importancia de la filosofía de los sistemas mecatrónicos en el desarrollo tecnológico actual.
- Adquirir el conocimiento de una metodología en el desarrollo de sistemas mecatrónicos, sabiendo aplicar las fases del diseño mecatrónico desde la concepción inicial, pasando por el desarrollo de prototipos, hasta llegar a la concreción final de dicho sistema. Así como saber escoger los componentes adecuados a la problemática suscitada por dicho sistema.
- Diseñar sistemas mecatrónicos de aplicación general integrando conocimientos de diseño electrónico, mecánico, programación, máquinas eléctricas y control.
- Saber diferenciar los tipos de mantenimiento aplicables a los sistemas mecatrónicos, así como desarrollar un plan de mantenimiento acorde a cada tipología o características particulares del sistema mecatrónico en estudio.
- Analizar como el mantenimiento de un sistema mecatrónico afecta al diseño de dicho sistema.
- Distinguir las diferentes fases que hay que tener en un cuanta al realizar un estudio de seguridad en sistemas mecatrónicos.
- Analizar como la seguridad en un sistema mecatrónica afecta tanto a su mantenimiento como a su proceso de diseño.
- Saber aplicar la normativa vigente en cuanto a diseño, mantenimiento y seguridad de sistemas mecatrónicos se refiere.
2.3. Importancia de los resultados de aprendizaje
Esta asignatura tiene un marcado carácter ingenieril, es decir, ofrece una formación con contenidos de aplicación y desarrollo inmediato en el mercado laboral y profesional. A través de la consecución de los pertinentes resultados de aprendizaje se obtiene la capacidad necesaria para el entendimiento del desarrollo y funcionamiento de sistemas mecatrónicos, en base a su diseño, mantenimiento y seguridad, aspectos indispensables para el Ingeniero/a Mecatrónico/a.
3.1. Tipo de pruebas y su valor sobre la nota final y criterios de evaluación para cada prueba
El estudiante deberá demostrar que ha alcanzado los resultados de aprendizaje previstos mediante las siguientes actividades de evaluación
Sistema de evaluación continua.
Siguiendo el espíritu de Bolonia, en cuanto al grado de implicación y trabajo continuado del alumno a lo largo del curso, la evaluación de la asignatura contempla el sistema de evaluación continua, como el más acorde para estar en consonancia con las directrices marcadas por el nuevo marco del EEES.
El sistema de evaluación continua va a contar con el siguiente grupo de actividades calificables:
— Actividades individuales en clase: La participación activa en todo el proceso de enseñanza-aprendizaje, la exposición pública de trabajos y la resolución de ejercicios teórico-prácticos en clase contribuirá con un 10 % a la nota final de la asignatura.
— Prácticas de laboratorio: Se realizarán prácticas correspondientes a cada uno de los temas susceptibles de ello, las cuales servirán para asimilar y aplicar los conceptos vistos en la teoría y adquirir las pertinentes destrezas. Dichas prácticas se efectuarán en grupos de alumnos/as, teniéndose en cuenta que además de verificarse su correcto funcionamiento se deberá elaborar una memoria, cuyo formato será facilitado por el profesor y que se tendrá que entregar para su corrección en la siguiente clase. Las memorias de las prácticas, si se entregan correctamente, de forma completa y en el plazo de tiempo exigido, contribuirán con un 15 % a la nota final de la asignatura. La realización de estas prácticas y su aprendizaje son obligatorias para todos, por ello formarán parte de la prueba global de evaluación. Si algún alumno no pudiera asistir a las clases de prácticas, posteriormente las tendrá que realizar en el horario extraordinario determinado a tal fin.
— Ejercicios, cuestiones teóricas y trabajos propuestos: El profesor propondrá ejercicios, problemas, casos prácticos, cuestiones teóricas, trabajos, etc. a resolver de manera individual o en grupo de tres alumnos/as como máximo. Dicha actividad contribuirá con un 25 % a la nota final de la asignatura, para tener en cuenta esta nota, se deberá entregar los trabajos en las fechas marcadas.
—Pruebas escritas: Serán realizadas con el fin de regular el aprendizaje, estimular el reparto del esfuerzo a lo largo del tiempo y disponer de una herramienta de evaluación más individualizada del proceso educativo. Dichas prueban recogerán cuestiones teóricas y/o prácticas, de los diferentes temas a evaluar, su número total será de dos repartidas a lo largo del todo el semestre. Dicha actividad contribuirá con un 50 % a la nota final de la asignatura.
Como resumen a lo anteriormente expuesto se ha diseñado la siguiente tabla de ponderación del proceso de calificación de las diferentes actividades en la que se ha estructurado el sistema de evaluación continua de la asignatura.
Actividad del sistema de evaluación continua
|
Ponderación
|
Actividades individuales en clase
|
10 %
|
Prácticas de laboratorio
|
15 %
|
Ejercicios, cuestiones teóricas y trabajos propuestos
|
25 %
|
Pruebas escritas
|
50 %
|
Previamente a la primera convocatoria el profesor de la asignatura notificará a cada alumno/a si ha superado o no la asignatura en función del aprovechamiento del sistema de evaluación continua, en base a la suma de las puntuaciones obtenidas en las distintas actividades desarrolladas a lo largo de la misma, contribuyendo cada una de ellas con un mínimo de su 50 %. En caso de no aprobar de este modo, el alumno/a dispondrá de dos convocatorias adicionales para hacerlo (prueba global de evaluación), por otro lado el alumno/a que haya superado la asignatura mediante esta dinámica, también podrá optar por la prueba global de evaluación, en primera convocatoria, para subir nota pero nunca para bajar.
Los criterios de evaluación a seguir para las actividades del sistema de evaluación continua son:
—Actividades individuales en clase: Se tendrá en cuenta la participación activa del alumno/a, respondiendo a las preguntas puntualmente planteadas por el profesor en el trascurso diario de la clase, su soltura y expresión oral a la hora de presentar en público los trabajos y la calificación de los ejercicios teóricos-prácticos propuestos y recogidos in situ. Todas las actividades contribuirán en la misma proporción a la nota total de dicho bloque, siendo valoradas de 0 a 10 puntos. Se deberá realizar al menos el 80 % de dichas actividades para optar al sistema de evaluación continua.
—Prácticas de laboratorio: En cada una de las prácticas se valorará la dinámica seguida para su correcta ejecución y funcionamiento, así como la problemática suscitada en su desarrollo, siendo el peso específico de este apartado del 40 % de la nota total de la práctica. El 60 % restante se dedicará a la calificación de la memoria presentada, es decir, si los datos exigidos son los correctos y se ha respondido correctamente a las cuestiones planteadas. La puntuación de cada práctica será de 0 a 10 puntos y nunca inferior a 5, ya que si no se considerará suspendida y habrá que repetirla, corrigiéndose aquello que no sea correcto. La calificación final del conjunto de las prácticas será la media aritmética de todas ellas.
—Ejercicios, cuestiones teóricas y trabajos propuestos: Se valorará su planteamiento y correcto desarrollo, la redacción y coherencia de lo tratado, así como la consecución de resultados y las conclusiones finales obtenidas, la puntuación irán de 0 a 10 puntos.
● Trabajo 1: Basado en la temática relacionada con el proceso de diseño de sistemas mecatrónicos.
●Trabajo 2: Basado en la temática relacionada con el mantenimiento y seguridad de sistemas mecatrónicos.
—Pruebas escritas: Consistirán en el típico examen escrito puntuado de 0 a 10 puntos. La calificación final de dicha actividad vendrá dada por la media aritmética de dichas pruebas, siempre y cuando no exista una nota unitaria inferior a 3 puntos, en este caso la actividad quedará suspensa. Se valorará el planteamiento y la correcta resolución, así como la justificación de la metodología empleada a la hora de resolver los ejercicios. Particularizándose, para cada una de las pruebas se tendrá lo siguiente:
● Prueba 1: Constará de varios ejercicios teóricos y/o prácticos, relativos al tema de mantenimiento de sistemas mecatrónicos. La parte teórica estará compuesta por preguntas a desarrollar o tipo test contribuyendo a la nota total de la prueba con un 30 %, quedando reservado para la parte práctica el 70 %.
● Prueba 2: Constará de varios ejercicios teóricos y/o prácticos, relativos al tema de seguridad de sistemas mecatrónicos. La parte teórica estará compuesta por preguntas a desarrollar o tipo test contribuyendo a la nota total de la prueba con un 30 %, quedando reservado para la parte práctica el 70 %.
Prueba global de evaluación.
El alumno/a deberá optar por esta modalidad cuando, por su coyuntura personal, no pueda adaptarse al ritmo de trabajo requerido en el sistema de evaluación continua, haya suspendido o quisiera subir nota habiendo sido participe de dicha metodología de evaluación.
Al igual que en la metodología de evaluación anterior, la prueba global de evaluación tiene que tener por finalidad comprobar si los resultados de aprendizaje han sido alcanzados, al igual que contribuir a la adquisición de las diversas competencias, debiéndose realizar mediante actividades más objetivas si cabe.
La prueba global de evaluación va a contar con el siguiente grupo de actividades calificables:
—Prácticas de laboratorio: Se tendrán que llevar a cabo integradas dentro del horario de la evaluación continua. Si esto no fuera posible se podrán realizar en horario especial de laboratorio a concretar durante el semestre. De igual forma contribuirán con un 15 % a la nota final de la evaluación.
—Ejercicios, cuestiones teóricas y trabajos propuestos: El profesor propondrá ejercicios, problemas, casos prácticos, cuestiones teóricas, trabajos, etc. a resolver de manera individual, siendo entregadas en la fecha fijada al efecto. Dicha actividad contribuirá con un 25 % a la nota final de la asignatura.
—Examen escrito: Consiste en la resolución de ejercicios de aplicación teórica y/o práctica de similares características a los resueltos durante el desarrollo convencional de la asignatura. Dicha prueba será única con ejercicios representativos de los temas, contribuyendo con un 60 % a la nota final de la asignatura.
Como resumen a lo anteriormente expuesto se ha diseñado la siguiente tabla de ponderación del proceso de calificación de las diferentes actividades en la que se ha estructurado la prueba global de evaluación de la asignatura.
Actividad de la prueba global de evaluación
|
Ponderación
|
Prácticas de laboratorio
|
15 %
|
Ejercicios, cuestiones teóricas y trabajos propuestos
|
25 %
|
Examen escrito
|
60 %
|
Se habrá superado la asignatura en base a la suma de las puntuaciones obtenidas en las distintas actividades desarrolladas, contribuyendo cada una de ellas con un mínimo de su 50 %.
Para aquellos alumnos/as que hayan suspendido el sistema de evaluación continua, pero algunas de sus actividades, a excepción de las pruebas escritas, las hayan realizado podrán promocionarlas a la prueba global de evaluación, pudiendo darse el caso de sólo tener que realizar el examen escrito.
Todas las actividades contempladas en la prueba global de evaluación, a excepción del examen escrito, podrán ser promocionadas a la siguiente convocatoria oficial, dentro del mismo curso académico.
Los criterios de evaluación a seguir para las actividades de la prueba global de evaluación serán los mismos que se han definido para el sistema de evaluación continua, teniéndose en cuenta que el examen escrito constará de ejercicios teóricos y/o prácticos, la parte teórica estará compuesta por preguntas a desarrollar o tipo test contribuyendo a la nota total de la prueba con un 30 %, quedando reservado para la parte práctica el 70 %.
4. Metodología, actividades de aprendizaje, programa y recursos
4.1. Presentación metodológica general
El proceso de aprendizaje que se ha diseñado para esta asignatura se basa en lo siguiente:
En una fuerte interacción profesor/alumno. Esta interacción se materializa por medio de un reparto de trabajo y responsabilidades entre alumnado y profesorado. No obstante, se tendrá que tener en cuenta que en cierta medida el alumnado/a podrá marca su ritmo de aprendizaje en función de sus necesidades y disponibilidad, siguiendo las directrices marcadas por el profesor. La presente asignatura se concibe como un conjunto único de contenidos, pero trabajados bajo tres formas fundamentales y complementarias como lo son: los conceptos teóricos de cada unidad didáctica, la resolución de problemas o cuestiones y las prácticas de laboratorio, apoyadas a su vez por otra serie de actividades.
La organización de la docencia se realizará siguiendo las pautas siguientes:
—Clases teóricas: Actividades teóricas impartidas de forma fundamentalmente expositiva por parte del profesor, de tal manera que se exponga los soportes teóricos de la asignatura, resaltando lo fundamental, estructurándolos en temas y/o apartados y relacionándolos entre sí.
—Clases prácticas: Elprofesor resuelve problemas o casos prácticos con fines ilustrativos. Este tipo de docencia complementa la teoría expuesta en las clases magistrales con aspectos prácticos.
—Prácticas de laboratorio: El grupo total de las clases magistrales se dividirá en varios, según el número de alumnos/as matriculados, de forma que se formen a su vez grupos más reducidos de dos o tres alumnos/as. Los alumnos/as realizarán ensayos, mediciones, montajes etc. en los laboratorios en presencia del profesor de prácticas.
—Tutorías grupales: Actividades programadas de seguimiento del aprendizaje en las que el profesor se reúne con un grupo de estudiantes para orientar sus labores de aprendizaje autónomo y de tutela de trabajos dirigidos o que requieren un grado de asesoramiento muy elevado por parte del profesor.
—Tutorías individuales: Son las realizadas a través de la atención personalizada, de forma individual, del profesor en el departamento. Tienen como objetivo ayudar a resolver las dudas que encuentran los alumnos/as, especialmente de aquellos que por diversos motivos no pueden asistir a las tutorías grupales o necesitan una atención puntual más personalizada. Dichas tutorías podrán ser presenciales o virtuales.
El planteamiento, metodología y evaluación de esta guía está preparado para ser el mismo en cualquier escenario de docencia. Se ajustarán a las condiciones socio-sanitarias de cada momento, así como a las indicaciones dadas por las autoridades competentes.
4.2. Actividades de aprendizaje
El programa que se ofrece al estudiante para ayudarle a lograr los resultados previstos comprende las siguientes actividades...
Actividades genéricas presenciales.
— Clases teóricas: Se explicarán los conceptos teóricos de la asignatura y se desarrollarán ejemplos prácticos ilustrativos como apoyo a la teoría cuando se crea necesario.
— Clases prácticas: Se realizarán problemas y casos prácticos como complemento a los conceptos teóricos estudiados.
— Prácticas de laboratorio: Los alumnos serán divididos en varios grupos, estando tutorizados por el profesor.
Actividades genéricas no presenciales.
— Estudio y asimilación de la teoría expuesta en las clases magistrales.
— Comprensión y asimilación de problemas y casos prácticos resueltos en las clases prácticas.
— Preparación de seminarios, resolución de problemas propuestos, etc.
— Preparación de las prácticas de laboratorio, elaboración de los guiones e informes correspondientes.
— Preparación de las pruebas escritas de evaluación continua y exámenes finales.
Actividades autónomas tutorizadas.
Aunque tendrán más bien un carácter presencial se han tenido en cuenta a parte por su idiosincrasia, estarán enfocadas principalmente a seminarios y tutorías bajo la supervisión del profesor.
Actividades de refuerzo.
De marcado carácter no presencial, a través de un portal virtual de enseñanza (Moodle) se dirigirán diversas actividades que refuercen los contenidos básicos de la asignatura. Estas actividades podrán ser personalizadas o no, controlándose su realización a través del mismo.
4.3. Programa
El programa de la asignatura se estructura en torno a dos componentes de contenidos complementarios:
— Teóricos.
— Prácticos.
CONTENIDOS TEORICOS.
Los contenidos teóricos se articulan en base a una serie de unidades didácticas, relación adjunta, bloques indivisibles de tratamiento, dada la configuración de la asignatura que se programa. Dichos temas recogen los contenidos necesarios para la adquisición de los resultados de aprendizaje predeterminados.
- TEMA 1: Diseño de sistemas mecatrónicos.
- TEMA 2: Mantenimiento de sistemas mecatrónicos.
- TEMA 3: Seguridad de sistemas mecatrónicos.
CONTENIDOS PRÁCTICOS.
Su objetivo no es otro que el que sean cubiertos los resultados de aprendizaje de la asignatura mediante un programa de prácticas de laboratorio, que englobe aspectos relacionados con las cuestiones siguientes:
—Trabajar con las herramientas, técnicas y métodos necesarios que intervienen en el proceso de diseño de sistemas mecatrónicos, desde su concepción inicial hasta la planificación de su fabricación.
—Aplicar las metodologías más comunes a la hora de planificar una tipología de mantenimiento, en base a situaciones y análisis de los resultados obtenidos.
—Nociones básicas de aplicación de elementos de seguridad en sistemas mecatrónicos.
Las prácticas de laboratorio a desarrollar por los alumnos/as serán realizadas en sesiones de dos horas de duración.
4.4. Planificación de las actividades de aprendizaje y calendario de fechas clave
La asignatura consta de 6 créditos ECTS, lo cual representa 150 horas de trabajo del alumno/a en la asignatura durante el semestre, es decir, 10 horas semanales durante 15 semanas lectivas.
Un resumen de la distribución temporal orientativa de una semana lectiva puede verse en la tabla siguiente. Estos valores se obtienen de la ficha de la asignatura de la Memoria de Verificación del título de grado, teniéndose en cuenta que el grado de experimentalidad considerado para dicha asignatura es alto.
Actividad
|
Horas semana lectiva
|
Clases magistrales
|
2
|
Prácticas de laboratorio
|
2
|
Otras actividades
|
6
|
No obstante la tabla anterior podrá quedar más detallada, teniéndose en cuenta la distribución global siguiente:
— 28 horas de clase magistral, con un 40 % de exposición teórica y un 60 % de resolución de problemas tipo.
— 28 horas de prácticas de laboratorio, en sesiones de 2 horas.
— 4 horas de pruebas evaluatorias escritas, a razón de una o dos hora por prueba.
— 90 horas de estudio personal, repartidas a largo de las 15 semanas de duración del semestre.
Las pruebas escritas de evaluación continua estarán relacionadas con los temas siguientes:
— Prueba 1: Tema 2.
— Prueba 2: Tema 3.
Las fechas más significativas del sistema de evaluación continua se publicaran en Moodle durante el desarrollo del curso.
Las fechas de la prueba global de evaluación serán las publicadas de forma oficial en la web de la Escuela.
El horario semanal de la asignatura se encontrará publicado de forma oficial en la web de la Escuela.
4.5. Bibliografía y recursos recomendados
Los recursos y materiales empleados en el desarrollo de la asignatura se encuentran reflejados en la tabla siguiente:
Material
|
Soporte
|
Apuntes de teoría del temario
Problemas temario
|
Papel/repositorio
|
Apuntes de teoría del temario
Presentaciones temario
Problemas temario
Enlaces de interés
|
Digital/Moodle
Correo electrónico
|
Software
|
Pc’s laboratorio
|
Manuales técnicos
|
Papel/repositorio
Digital/Moodle
|
Aparatos de laboratorio
|
|
http://psfunizar10.unizar.es/br13/egAsignaturas.php?codigo=28833