Curso Académico:
2020/21
30308 - Probabilidad y procesos
Información del Plan Docente
Año académico:
2020/21
Asignatura:
30308 - Probabilidad y procesos
Centro académico:
110 - Escuela de Ingeniería y Arquitectura
Titulación:
438 - Graduado en Ingeniería de Tecnologías y Servicios de Telecomunicación
581 - Graduado en Ingeniería de Tecnologías y Servicios de Telecomunicación
Créditos:
6.0
Curso:
2
Periodo de impartición:
Primer semestre
Clase de asignatura:
Formación básica
Materia:
Estadística
1.1. Objetivos de la asignatura
La asignatura y sus resultados previstos responden a los siguientes planteamientos y objetivos:
La asignatura se enfoca a presentar las herramientas básicas para modelar situaciones aleatorias, incluyendo una introducción de los procesos estocásticos y su utilidad en el ámbito de las Telecomunicaciones, de donde se extraen los ejemplos y ejercicios que ilustran el aprendizaje de las distintas técnicas y procedimientos.
Así ejemplos basados en los errores producidos en una transmisión secuencial de dígitos sirven de base para el aprendizaje del cálculo de probabilidades en tanto que los tiempos entre llegadas sucesivas de este tipo de eventos aleatorios motivan la definición de variables aleatorias. Asimismo la necesidad de conocer las características de un fenómeno a partir de sus observaciones propicia el estudio de herramientas de inferencia estadística. El análisis de la evolución de un fenómeno aleatorio a lo largo del tiempo sustenta la definición de modelos para los procesos estocásticos.
El objetivo final es que el alumno integre los conocimientos que se cursan en la asignatura en el contexto formativo del grado de en Ingeniería de Tecnologías y Servicios de Telecomunicación y adquiera destreza en la modelización probabilística, así como en el uso de técnicas estadísticas para abordar el análisis de la información en una base de datos y para realizar (o valorar de manera crítica) un informe con los análisis estadísticos y elaborar conclusiones relevantes para la toma de decisiones.
1.2. Contexto y sentido de la asignatura en la titulación
La asignatura es obligatoria y forma parte de la formación básica de los estudiantes del Grado en Ingeniería de Tecnologías y Servicios de Telecomunicación, en el primer semestre del segundo curso, lo que supone que el estudiante ha adquirido formación en los resultados de aprendizaje de las asignaturas de Cálculo, Algebra, Cálculo vectorial y diferencial y Matemáticas para la Telecomunicación.
Se adquieren competencias en el estudio del comportamiento aleatorio de un fenómeno, reflejado en una o dos variables o que, observado a lo largo del tiempo, implica la consideración de un proceso estocástico. Se trata de conceptos y herramientas básicos para materias de Señal y Comunicaciones, de Redes, Sistemas y Servicios de la rama omún de Telecomunicación, así como de algunas de tecnologías específicas como Tratamiento de la Información.
1.3. Recomendaciones para cursar la asignatura
Se aconseja a los alumnos cursar la asignatura de manera continuada durante el cuatrimestre, asistiendo y participando activamente en las sesiones con el profesor, tanto de carácter expositivo como en las prácticas. Esto permitirá al alumno adquirir secuencialmente tanto los conocimientos en los distintos módulos, como las destrezas en las distintas técnicas estadísticas sobre un software adecuado y abordar en las mejores condiciones las pruebas de evaluación y tareas periódicas programadas a lo largo del curso.
Es recomendable que el alumno conozca las herramientas básicas de cálculo diferencial e integral que se imparten en las asignaturas de Matemáticas del primer curso.
2. Competencias y resultados de aprendizaje
2.1. Competencias
Al superar la asignatura, el estudiante será más competente para...
Capacidad para planificar, presupuestar, organizar, dirigir y controlar tareas, personas y recursos (C2)
Capacidad para resolver problemas y tomar decisiones con iniciativa, creatividad y razonamiento crítico (C4)
Capacidad para comunicar y transmitir conocimientos, habilidades y destrezas en castellano (C5)
Capacidad para usar las técnicas, habilidades y herramientas de la Ingeniería necesarias para la práctica de la misma (C6)
Capacidad para la resolución de los problemas matemáticos que puedan plantearse en la ingeniería. Aptitud para aplicar los conocimientos sobre: álgebra lineal; geometría; geometría diferencial; cálculo diferencial e integral; ecuaciones diferenciales y en derivadas parciales; métodos numéricos; algorítmicos numéricos; estadística y optimización. (CFB1)
Que los estudiantes sepan aplicar sus conocimientos a su trabajo o vocación de una forma profesional y posean las competencias que suelen demostrarse por medio de la elaboración y defensa de argumentos y la resolución de problemas dentro de su área de estudio. (CFB2)
2.2. Resultados de aprendizaje
El estudiante, para superar esta asignatura, deberá demostrar los siguientes resultados...
1 Tiene aptitud para aplicar las técnicas de tratamiento y análisis de datos.
2 Conoce los conceptos, aplicaciones y resultados fundamentales de la probabilidad.
3 Comprende los conceptos de variable aleatoria unidimensional y multidimensional.
4 Domina el modelado de entornos de la ingeniería bajo naturaleza estocástica mediante variables aleatorias así como la realización de cálculos en situaciones de incertidumbre.
5 Entiende el significado y utilización de un proceso estocástico.
6 Conoce los procesos más usuales: Gaussianos, de Poisson, Markovianos
7 Conoce los elementos para representar las características más relevantes de un proceso: funciones de medias, autocorrelación y covarianza.
8 Tiene capacidad para la elaboración, comprensión y crítica de informes basados en análisis estadísticos.
2.3. Importancia de los resultados de aprendizaje
Esta asignatura enseña los principios básicos para abordar situaciones en presencia de incertidumbre. Los estudiantes desarrollan competencias para abordar problemas reales, para trabajar con datos y aprenden a reconocer y utilizar modelos que sirven para reflejar los aspectos fundamentales de situaciones relacionadas con el ámbito de las Telecomunicaciones en las que hay aleatoriedad. Así, el diseño, análisis o mejora de un sistema de comunicación implica la construcción de un modelo que describa su funcionamiento y permita estudiarlo, bien analíticamente bien mediante simulación. Ante la imposibilidad de controlar todos los factores que influyen en el funcionamiento del sistema real, el modelado debe incluir términos aleatorios, de modo que los conocimientos de probabilidad y procesos capacitan al estudiante para tener en cuenta y modelar las componentes aleatorias presentes en cualquier sistema.
Por otra parte, en su trabajo cotidiano, un ingeniero maneja información procedente de bases de datos y debe ser capaz de tomar decisiones a partir de esa información, lo que requiere un análisis estadístico exploratorio, la estimación de parámetros y la consideración del error muestral asociado (intervalos de confianza) y el planteamiento de contrastes de hipótesis para tomar decisiones en un entorno con incertidumbre.
3.1. Tipo de pruebas y su valor sobre la nota final y criterios de evaluación para cada prueba
El estudiante deberá demostrar que ha alcanzado los resultados de aprendizaje previstos mediante las siguientes actividades de evaluacion
Se recomienda una trayectoria de aprendizaje secuenciado a lo largo del curso, asociada a una evaluación continua, cuya calificación se obtendrá a partir de las siguientes actividades:
1. Una prueba escrita consistente en resolver cuestiones teórico-prácticas y problemas relativos a la materia impartida del módulo de Modelos de distribución de probabilidad (resultados de aprendizaje 2-4). Se realizará hacia la mitad de curso.
2. Una prueba escrita relativa a los módulos Distribuciones aleatorias bidimensionales y Procesos estocásticos (resultados de aprendizaje 5-7). Se realizará a final del cuatrimestre, en la convocatoria oficial de la asignatura.
3. Actividades propuestas en el laboratorio informático para evaluar la destreza en el análisis exploratorio, la definición de un modelo probabilística acorde con las características de los datos y en la toma de decisiones en situaciones de incertidumbre, optimización y planificación de recursos (resultados de aprendizaje 1, 8). Se realizarán a lo largo del curso.
4. Una prueba relativa a los contenidos desarrollados en las prácticas de laboratorio. Se realizará al finalizar el cuatrimestre.
Los alumnos que no realicen o no superen la prueba propuesta en el punto 1 anterior, deberán realizarla en la convocatoria oficial de la asignatura.
Cada una de las dos pruebas escritas de los puntos 1 y 2 suponen la mitad de la calificación mediante pruebas escritas; que a su vez corresponde con el 75% de la calificación final. El alumno ha de obtener una nota de al menos 4 (sobre 10) en cada una de ellas y una media de al menos 5.
Los resultados de aprendizaje relativos a la destreza en el análisis estadístico de datos se evaluarán con la calificación conjunta de la prueba correspondiente (15% de la calificación final) y de las actividades de evaluación formativa realizadas durante todo el curso ligadas al laboratorio informático (15%). El alumno ha de obtener una calificación de al menos 5 sobre 10 en estas actividades.
Para superar la asignatura el alumno deberá obtener una nota final de al menos 5 puntos, sobre 10.
Nota: Siguiendo la normativa de la Universidad de Zaragoza al respecto, en las asignaturas que disponen de sistemas de evaluación continua o gradual, se programará además una prueba de evaluación global para aquellos estudiantes que decidan optar por este segundo sistema.
4. Metodología, actividades de aprendizaje, programa y recursos
4.1. Presentación metodológica general
El proceso de aprendizaje que se ha diseñado para esta asignatura se basa en lo siguiente:
La metodología que se propone trata de fomentar el trabajo continuado del estudiante, se presentan los conceptos secuencialmente para promover su mejor comprensión, pasando de modelos sencillos de probabilidad, variables aleatorias de una dimensión, extensión al caso bidimensional y por último la incorporación de los conceptos de procesos estocásticos. Además, se insiste en ofrecer una visión práctica utilizando problemas y datos reales.
En las sesiones con el grupo completo se tratan los aspectos teóricos en forma de clase magistral y se motivan con aplicaciones inmediatas en ejemplos-tipo. El planteamiento y modelado de problemas realistas, así como el tratamiento con muestras de datos se realiza en sesiones prácticas en las que se aprenderá a trabajar con un software estadístico.
4.2. Actividades de aprendizaje
El programa que se ofrece al estudiante para ayudarle a lograr los resultados previstos comprende las siguientes actividades...
Se plantean los siguientes módulos de aprendizaje:
Unidad didáctica 1: Análisis estadístico de datos: Exploratorio
Unidad didáctica 2: Variables aleatorias en una dimensión
Unidad didáctica 3: Vectores aleatorios.
Unidad didáctica 4: Análisis estadístico de datos: Inferencia
Unidad didáctica 5: Procesos estocásticos
Estos módulos se desarrollarán a través de actividades que desglosan los 6 créditos ECTS correspondientes a la asignatura (150 horas / estudiante) repartidas como sigue:
Actividades presenciales:
30 h de clase magistral, en grupo único.
30 h de resolución de casos prácticos, en grupos reducidos (15 sesiones de 2 horas presenciales).
Actividades no presenciales:
30 h de trabajo individual dedicado al estudio de aspectos teóricos y 54 h a actividades de carácter práctico.
6 h dedicadas a actividades de evaluación.
4.3. Programa
El programa detallado para lograr los resultados previstos es
U. DIDÁCTICA 1. ANÁLISIS ESTADÍSTICO DE DATOS: EXPLORATORIO
Tema 1. Análisis exploratorio de datos (1 semana)
Tipos de variables
Representaciones gráficas.
Distribución de frecuencias. Percentiles.
Medidas estadísticas: medidas de centralización, dispersión y forma.
U. DIDÁCTICA 2. VARIABLES ALEATORIAS EN UNA DIMENSIÓN
Tema 2. Probabilidad (1,5 semanas)
Experimentos determinísticos y aleatorios.
Espacio de probabilidad.
Probabilidad condicionada.
Independencia de dos sucesos.
Tema 3. Variables aleatorias. (2,5 semanas)
Definición de variable aleatoria.
Función de distribución de probabilidad.
Variable aleatoria discreta. Variable aleatoria continua, función de densidad de probabilidad.
Variables aleatorias condicionadas.
Distribución de una función de variable aleatoria.
Esperanza. Momentos de una v. a. Varianza.
Aproximación de momentos de funciones de variables aleatorias.
Función característica.
Tema 4. Distribuciones usuales (2 semanas)
Distribución uniforme discreta.
Pruebas de Bernoulli y distribuciones asociadas: binomial, geométrica,…
Distribución de Poisson.
Distribución exponencial. Distribución gamma.
Proceso de Poisson.
Distribución uniforme continua.
Distribución normal. Aproximaciones binomial-normal y Poisson-normal.
Distribuciones de Weibull, de Rayleigh y lognormal.
U. DIDÁCTICA 3. VECTORES ALEATORIOS
Tema 5. Distribuciones multidimensionales (2 semanas)
Definición. Función de distribución conjunta de una v. a. n-dimensional. Función de masa y función de densidad conjunta.
Distribuciones marginales y condicionales.
Independencia de variables aleatorias.
Distribución de una función de v. a. bidimensional.
Esperanza de una función de una v. a. bidimensional.
Momentos de una v. a. bidimensional. Matriz de covarianzas y correlación.
Esperanza condicional, propiedades.
Línea general de regresión y recta de regresión.
Análisis exploratorio de variables continuas.
Tema 6. Distribuciones multidimensionales usuales (1 semana)
Distribución multinomial.
Distribución normal bidimensional y n-dimensional.
U. DIDÁCTICA 4. ANÁLISIS ESTADÍSTICO DE DATOS: INFERENCIA
Tema 7. Introducción a la inferencia estadística (1 semana)
Sucesiones de variables aleatorias. Convergencia en distribución y en probabilidad.
Ley débil de los grandes números. Teorema central del límite.
Muestra aleatoria simple. Estimación puntual. Máxima verosimilitud.
Estimación por intervalo.
Contrastes de hipótesis. P-valor
Tests para poblaciones normales, medias y varianzas. Tests para proporciones.
Test para el ajuste de distribuciones. Gráficos de probabilidad.
U. DIDÁCTICA 5. PROCESOS ESTOCÁSTICOS
Tema 8. Procesos estocásticos (2,5 semanas)
Definición y clasificación.
Funciones de distribución, de masa y de densidad de orden k. Funciones de medias, autocorrelación y autocovarianza.
Procesos de especial interés: de términos e incrementos independientes, incorrelados y ortogonales. Ruido blanco. Procesos de conteo.
Estacionariedad en sentido estricto y .en sentido amplio.
Valor medio y autocorrelación en el tiempo, esperanza y varianza.
Procesos ergódicos. Ergodicidad respecto a la media.
Función de densidad espectral. Transformaciones lineales de procesos estacionarios.
Tema 9. Procesos usuales en Telecomunicación (1,5 semanas)
Proceso gaussiano.
Señal telegráfica aleatoria.
Procesos de Markov.
Teoría de colas: filas de espera.
4.4. Planificación de las actividades de aprendizaje y calendario de fechas clave
Calendario de sesiones presenciales y presentación de trabajos
La asignatura divide sus 6 créditos en 3 ECTS en grupo completo de exposición de la teoría y ejemplos-tipo que motivan su utilidad en el ámbito de la Ingeniería de Telecomunicación. Los otros 3 ECTS están dirigidos a desarrollar destrezas en el planteamiento (modelado) y resolución de problemas realistas.
La asignatura se articula con 4 horas de clase a la semana durante las 15 semanas que dura el cuatrimestre. De ellas, 2 horas se imparten al grupo completo para la exposición de los conceptos teóricos y ejemplos-tipo. Otras 2 horas se imparten a grupos reducidos, habitualmente de laboratorio informático, para desarrollar destrezas en el planteamiento de problemas ligados a situaciones reales (modelado o análisis de datos), resolución e interpretación de los resultados.
De modo periódico y asociado a cada módulo de aprendizaje se propondrá a cada estudiante la realización de problemas y tareas que deberá entregar para su revisión por parte del profesor; esta actividad formativa permite identificar dificultades y paliarlas en un proceso continuado.
Hacia la mitad de curso se realizará una prueba escrita consistente en resolver cuestiones teórico-prácticas y problemas relativos a la materia impartida de la unidad didáctica de Variables aleatorias en una dimensión. Al final del curso se realizará una prueba similar relativa a Vectores aleatorios y Procesos estocásticos.
La destreza en el análisis exploratorio y toma de decisiones en situaciones de incertidumbre, usando contrastes de hipótesis, se evaluará complementariamente con actividades propuestas y una prueba final relativa al laboratorio de informática, donde se apliquen una buena parte de las técnicas estadísticas y probabilísticas estudiadas a lo largo del curso.