Syllabus query

Academic Year/course: 2020/21

424 - Bachelor's Degree in Mechatronic Engineering

28823 - Regulation and Control of Automatic Systems

Syllabus Information

Academic Year:
28823 - Regulation and Control of Automatic Systems
Faculty / School:
175 - Escuela Universitaria Politécnica de La Almunia
424 - Bachelor's Degree in Mechatronic Engineering
First semester
Subject Type:

1. General information

1.1. Aims of the course

The expected result of the subject responds to the following goals

The Automatic Regulation and Control is the second subject in the Mechatronics degree that studies the fundaments of the control techniques. Therefore, the student may improve its scientific and technological foundations in systems automation, modeling, simulation, and control.

This subject forms part of the topic Automatic Control and it requires from others competencies in subjects of the previous courses. The student must rule the theory of analog automatic systems, calculus of the complex variable, Laplace transform, Z transforms, differential equations, algebra, physic, and mechanic.

This subject finalizes the basis of regulation and control theory, the students find in the upper courses some subjects that let extend their knowledge in control systems, like robotics or advanced control techniques.

1.2. Context and importance of this course in the degree

The Automatic Regulation and Control is a subject that forms part of the Mechatronics Engineering Degree which is imparted in EUPLA, the subjects are englobed inside the Control module.

This subject has extraordinaire importance in the acquisition of the competences of the degree. Moreover, it gives additional useful skills for the Mechatronics Engineering work in industrial control.

1.3. Recommendations to take this course

In order to be successful in this subject the student must pass the following subjects: Automatic Foundation, Math I, II & III, Mechanical engineering, Electrical engineering, and its recommended to have Physics I, Physics II and Informatics.

2. Learning goals

2.1. Competences

The student must be able to…

General competencies:

GI03: Have the knowledge in basics subjects and technologies that make the students capable of learning new methods and theories and give their necessary versatility in order to adopt new sceneries.
GI04: Have the ability to solve problems with initiative, take decisions, creativity, critical reasoning and communicate and transmit knowledge, abilities, and skills in the field of Industrial Engineering and especially in Industrial Electronic
GI06: Have the ability to handle specifications, regulations, and compulsory norms.
GC02: Interpret experimental dates, contrast them with theoretical foundations and extract conclusions.
GC03: Have the capability in abstract and logical thinking
GC04: Have the capability to learn in a continuous way, self-directed and autonomous.
GC05: Be capable of evaluating the alternatives.
GC06: Have the ability in adaptation to the fast evolution of technology.
GC07: Be capable of leading a team and be a committed member of the team.
GC08: Have the ability to find technical information, understand it and value it.
GC09: Have a positive attitude to technological innovation.
GC10: Have the ability to write technical documentation and represent it with informatics tools.
GC11: Be capable of communicating their thinking and designs in an easy way to specialized and nonspecialized audiences.
GC14: Have the ability to understand the operation and develop maintenance of devices in mechanical, electrical and electronics installations.
GC15: Be capable of analyzing and put on simplified models to the devices and technological applications that allow making provisions about their behaviour.
GC16: Have the ability to configure, simulate, build and test the prototypes of electronics and mechanical systems.
GC17: Be capable of the right interpretation of plans and technical documentation.

Specific competencies:

EI06: Have the knowledge about the fundaments of automatic and control methodology.
EE10: Have the knowledge and the capability to the model and simulation of electronic systems.
EE11: Have the applied knowledge of industrial informatics and communications.
EE12: Have the ability to design control systems and industrial automation systems.
EE13: Have the knowledge of automatic regulation and control techniques and their application to industrial automation.

2.2. Learning goals

The student in order to pass the subjects must demonstrate the following results:

  1. He needs to understand the automation fundaments and industrial control.
  2. He needs to have a good command of modelling tools, analysis, and design of control systems and automation.
  3. Get some basis in industrial communications.

2.3. Importance of learning goals

This subject has a strong engineering character. It offers an important quantity of contents that are very useful to the market labour and professional market. When the student reaches the learning outcomes he obtains the necessaire capability to understand the control systems, which are essential to the design and setup of each application, working plant, industrial process, etc. included in the Mechatronic Engineering field.

In addition, this subject gives the fundaments in developing future subjects in the field of control.

3. Assessment (1st and 2nd call)

3.1. Assessment tasks (description of tasks, marking system and assessment criteria)

The student must demonstrate that he has reached the expected learning results with the next evaluation activities:

  1. Practical work (30%). These Works included laboratory workshop and problem-solving. In the laboratory workshop, the student must make a previous study that must give before the beginning of the practice. The final mark is based on the quality of the analysis and the obtained results given in a written document. In order to pass the subject, the student must have a mark of at least five points.
  2. Written test (70%), the student can find some questions or need to solve an engineering problem like the ones resolved in the theoretical lessons. We value the quality and clarity of the provided solution, the used concepts, the absence of errors in developing and solution, and the right use of the terminology and notation. In order to pass the subject, the student must have a mark of at least five points in each test.

The student may choose between continuous evaluation or global evaluation. The continuous evaluation consists of two write test plus written essays in a laboratory workshop. The global evaluation consists of a written test at the end of the course and the written essays in a laboratory workshop.

The student that suspends any part of the continuous evaluation can pass it in the global test.

4. Methodology, learning tasks, syllabus and resources

4.1. Methodological overview

The learning process is designed following these key ideas:

There is a strong interaction between teacher and student. This interaction is brought into being through a division of work and responsibilities between the students and the teacher. Nevertheless, it must be taken into account that, to a certain degree, students can set their learning pace based on their own needs and availability, following the guidelines set by the teacher.

The current subject Automatic Foundation is conceived as a stand-alone combination of contents, yet organized into three fundamental and complementary forms, which are: the theoretical concepts of each teaching unit, the solving of problems or resolution of questions and laboratory work, at the same time supported by other activities

The organization of teaching will be carried out using the following steps:

  • Lectures: Theoretical activities carried out mainly through exposition by the teacher, where the theoretical supports of the subject are displayed, highlighting the fundamental, structuring them in topics and or sections, interrelating them.
  • Practice Sessions: The teacher resolves practical problems or cases for demonstrative purposes. This type of teaching complements the theory shown in the lectures with practical aspects.
  • Laboratory Workshop: The lecture group is divided up into various groups, according to the number of registered students, but never with more than 20 students, in order to make up smaller sized groups.
  • Individual Tutorials: Those carried out giving individual, personalized attention with a teacher from the department. Said tutorials may be in person or online.

If classroom teaching were not possible due to health reasons, it would be carried out on-line

4.2. Learning tasks

The course includes the following learning tasks: 

Face-to-face generic activities:

  • Lectures: The theoretical concepts of the subject are explained and illustrative examples are developed as a support to the theory when necessary.
  • Practice Sessions: Problems and practical cases are carried out, complementary to the theoretical concepts studied.     
  • Laboratory Workshop: This work is tutored by a teacher, in groups of no more than 20 students.

Generic non-class activities:

  • Study and understanding of the theory taught in the lectures.
  • Understanding and assimilation of the problems and practical cases solved in the practical classes.
  • Preparation of seminars, solutions to proposed problems, etc.
  • Preparation of laboratory workshops, preparation of summaries and reports.
  • Preparation of the written tests for continuous assessment and final exams.

The subject has 6 ECTS credits, which represents 150 hours of student work in the subject during the trimester, in other words, 10 hours per week for 15 weeks of class.

A summary of a weekly timetable guide can be seen in the following table. These figures are obtained from the subject file in the Accreditation Report of the degree, taking into account the level of experimentation considered for the said subject is moderate.



Hours per week



Laboratory workshop


Other activities



Nevertheless, the previous table can be shown in greater detail, taking into account the following overall distribution:

— 44 hours of lectures, with 50% theoretical demonstration and 50% solving type problems.

— 12 hours of laboratory workshop, in 1 or 2-hour sessions.

— 4 hours of written assessment tests, one hour per test.

— 40 hours of teamwork divided up over the 15 weeks of the semester.

— 50 hours of personal study, divided up over the 15 weeks of the semester.

4.3. Syllabus

The course will address the following learning tasks:

The theoretical program.

  1. Introduction to the digital control systems
  2. Sequences
  3. Z-transform
  4. Discrete systems
  5. Sampling systems
  6. Dynamic analysis of the discrete systems
  7. Design of discrete regulators

Laboratory workshop

  1. Design of digital filters
  2. Digital sensors
  3. PID discrete controllers
  4. The design of digital control systems.




Topic theory notes / Topic problems


Topic presentations / Topic problems / Related links


4.4. Course planning and calendar

Class hall sessions & work presentations timetable will be at 

The dates of the final exams will be those that are officially published at

The written assessment tests will be related to the following topics:

  • Test 1: Topic 1, 2, 3 y 4.
  • Test 2: Topic 5, 6 y 7.

At the end of every topic, the student can find some reinforce exercises in order to guide him in their personal homework.

The activities of this subject and its temporal schedule depend on the academic organization proposed by the faculty in EUPLA and you can read it in section 5, activities and resources.

In the you can check the exams dates.

4.5. Bibliography and recommended resources

Curso Académico: 2020/21

424 - Graduado en Ingeniería Mecatrónica

28823 - Regulación y control automático

Información del Plan Docente

Año académico:
28823 - Regulación y control automático
Centro académico:
175 - Escuela Universitaria Politécnica de La Almunia
424 - Graduado en Ingeniería Mecatrónica
Periodo de impartición:
Primer semestre
Clase de asignatura:

1. Información Básica

1.1. Objetivos de la asignatura

La asignatura y sus resultados previstos responden a los siguientes planteamientos y objetivos:

Regulación y control automático es la segunda asignatura del plan de estudios en la que se abordan los fundamentos de las técnicas de control. Por tanto permite mejorar los fundamentos científicos y tecnológicos de la automática, modelado, simulación y control de sistemas.

Esta asignatura está dentro de la materia “Control” y requiere de otras competencias adquiridas en materias de primer curso y de segundo curso, concretamente se apoya en la teoría clásica de sistemas automáticos analógicos, fundamentos de variable compleja, transformada de Laplace, transformada Z, sistemas de ecuaciones diferenciales, algebra, matrices, física y mecánica.

Esta asignatura completa el cuerpo básico de la teoría de la regulación y control, el alumno encontrara otras asignaturas sobre esta materia que ampliarán los conocimientos adquiridos, abordando temas como la robótica y otras técnicas de control avanzadas.

1.2. Contexto y sentido de la asignatura en la titulación

La asignatura de Regulación y control automático, forma parte del Grado en Ingeniería de Mecatrónica que imparte la EUPLA, enmarcándose dentro del grupo de asignaturas que conforman el módulo denominado “Control”. Se trata de una asignatura de tercer curso ubicada en el quinto cuatrimestre y de carácter obligatorio, con una carga lectiva de 6 créditos ECTS.

Dicha asignatura tiene una especial relevancia en la adquisición de las competencias de la titulación, además de aportar una formación adicional útil en el desempeño de las funciones del Ingeniero de Mecatrónica relacionadas con el campo del control industrial.

1.3. Recomendaciones para cursar la asignatura

Para el adecuado desarrollo de la asignatura de Regulación y control automático, es necesario que el alumnado haya superado con anterioridad, la asignatura de Fundamentos de Automática, las 3 asignaturas de Matemáticas, la asignatura de Ingeniería Mecánica, la de Ingeniería Eléctrica e Informática y se recomienda haber realizado las asignaturas de Fundamentos de Física I, Fundamentos de Física II y Tecnología electrónica I.

2. Competencias y resultados de aprendizaje

2.1. Competencias

Al superar la asignatura, el estudiante será más competente para...

Competencias generales

GI03: Conocimientos en materias básicas y tecnológicas, que les capacite para el aprendizaje de nuevos métodos y teorías, y les dote de versatilidad para adaptarse a nuevas situaciones.
GI04: Capacidad de resolver problemas con iniciativa, toma de decisiones, creatividad, razonamiento crítico y de comunicar y transmitir conocimientos, habilidades y destrezas en el campo de la Ingeniería Industrial y en particular en el ámbito de la electrónica industrial.
GI06: Capacidad para el manejo de especificaciones, reglamentos y normas de obligado cumplimiento.
GC02: Interpretar datos experimentales, contrastarlos con los teóricos y extraer conclusiones.
GC03: Capacidad para la abstracción y el razonamiento lógico.
GC04: Capacidad para aprender de forma continuada, autodirigida y autónoma.
GC05: Capacidad para evaluar alternativas.
GC06: Capacidad para adaptarse a la rápida evolución de las tecnologías.
GC07: Capacidad para liderar un equipo así como de ser un miembro comprometido del mismo.
GC08: Capacidad para localizar información técnica, así como su comprensión y valoración.
GC09: Actitud positiva frente a las innovaciones tecnológicas.
GC10: Capacidad para redactar documentación técnica y para presentarla con ayuda de herramientas informáticas adecuadas.
GC11: Capacidad para comunicar sus razonamientos y diseños de modo claro a públicos especializados y no especializados.
GC14: Capacidad para comprender el funcionamiento y desarrollar el mantenimiento de equipos e instalaciones mecánicas, eléctricas y electrónicas.
GC15: Capacidad para analizar y aplicar modelos simplificados a los equipos y aplicaciones tecnológicas que permitan hacer previsiones sobre su comportamiento.
GC16: Capacidad para configurar, simular, construir y comprobar prototipos de sistemas electrónicos y mecánicos.
GC17: Capacidad para la interpretación correcta de planos y documentación técnica.

Competencias específicas

EI06: Conocimientos sobre los fundamentos de automatismos y métodos de control.
EE10: Conocimiento y capacidad para el modelado y simulación de sistemas electrónicos.
EE11: Conocimiento aplicado de informática industrial y comunicaciones.
EE12: Capacidad para diseñar sistemas de control y automatización industrial.
EE13: Conocimiento de sistemas de regulación automática y técnicas de control y su aplicación a la automatización industrial.

2.2. Resultados de aprendizaje

El estudiante, para superar esta asignatura, deberá demostrar los siguientes resultados...

  1. Comprender conceptos relacionados con la automatización y el control industrial.
  2. Dominar herramientas de modelado, análisis y diseño de sistemas de control y automatización.
  3. Adquirir fundamentos de comunicaciones industriales.

2.3. Importancia de los resultados de aprendizaje

Esta asignatura tiene un marcado carácter ingenieril, es decir, ofrece una formación con contenidos de aplicación y desarrollo inmediato en el mercado laboral y profesional. A través de la consecución de los pertinentes resultados de aprendizaje se obtiene la capacidad necesaria para el entendimiento del funcionamiento de los sistemas de control, los cuales serán absolutamente imprescindibles para el diseño y puesta en marcha de cualquier aplicación, planta, proceso, etc. incluidas dentro del ámbito de la Ingeniería de la Mecatrónica.

Además, la asignatura sienta las bases necesarias para el desarrollo de futuras asignaturas incluidas en los cursos superiores.

3. Evaluación

3.1. Tipo de pruebas y su valor sobre la nota final y criterios de evaluación para cada prueba

El estudiante deberá demostrar que ha alcanzado los resultados de aprendizaje previstos mediante las siguientes actividades de evaluacion

  1. Trabajos prácticos (30%). Estos trabajos incluyen prácticas de laboratorio y resolución de problemas. En alguna de las prácticas de laboratorio se solicitará al alumnado que realice un estudio previo, que se deberá entregar antes de comenzar las tareas de laboratorio. La calidad del análisis que el alumnado realice de los resultados obtenidos en el laboratorio, se valorará mediante una memoria final de cada una de las prácticas. Para superar la asignatura el alumnado deberá obtener una nota final de prácticas de laboratorio igual o superior a 5.
  2. Pruebas escritas teórico-prácticas (70%) en las que se plantearán cuestiones y/o problemas del ámbito de la ingeniería de complejidad similar a la utilizada durante el curso. Se valorará la calidad y claridad de la estrategia de resolución, los conceptos usados para resolver los problemas, ausencia de errores en el desarrollo y en las soluciones, y el uso correcto de la terminología y notación. En cada una de las pruebas escritas teórico-prácticas que se realicen, el alumnado deberá obtener una nota igual o superior a 5 para superar la asignatura. 

El estudiante podrá escoger entre una evaluación continua, realizada en forma de dos pruebas escritas y la entrega de los guiones de prácticas a lo largo del cuatrimestre, o una prueba global realizada al finalizar el cuatrimestre y la entrega de los guiones de prácticas.

El alumno que haya superado una parte de la evaluación continua, podrá presentarse al examen de evaluación global sólo con la parte de la evaluación continua no superada.

4. Metodología, actividades de aprendizaje, programa y recursos

4.1. Presentación metodológica general

El proceso de aprendizaje que se ha diseñado para esta asignatura se basa en lo siguiente:

En una fuerte interacción profesor/alumno. Esta interacción se materializa por medio de un reparto de trabajo y responsabilidades entre alumnado y profesorado. No obstante, se tendrá que tener en cuenta que en cierta medida el alumnado podrá marca su ritmo de aprendizaje en función de sus necesidades y disponibilidad, siguiendo las directrices marcadas por el profesor. La presente asignatura de regulación y control automático se concibe como un conjunto único de contenidos, pero trabajados bajo tres formas fundamentales y complementarias como lo son: los conceptos teóricos de cada unidad didáctica, la resolución de problemas o cuestiones y las prácticas, apoyadas a su vez por otra serie de actividades.

La organización de la docencia se realizará siguiendo las pautas siguientes:

  • Clases teóricas: Actividades teóricas impartidas de forma fundamentalmente expositiva por parte del profesor, de tal manera que se exponga los soportes teóricos de la asignatura, resaltando lo fundamental, estructurándolos en temas y/o apartados y relacionándolos entre sí.
  • Clases prácticas: El  profesor resuelve problemas o casos prácticos con fines ilustrativos. Este tipo de docencia complementa la teoría expuesta en las clases magistrales con aspectos prácticos.
  • Prácticas: El grupo total de las clases  teóricas o de las clases prácticas se puede o no dividir en grupos más reducidos, según convenga.
  • Tutorías individuales: Son las realizadas a través de la atención personalizada, de forma individual, del profesor en el departamento. Dichas tutorías podrán ser presenciales o virtuales.

Si esta docencia no pudiera realizarse de forma presencial por causas sanitarias, se realizaría de forma telemática

4.2. Actividades de aprendizaje

El programa que se ofrece al estudiante para ayudarle a lograr los resultados previstos comprende las siguientes actividades...

Implica la participación activa del alumnado, de tal manera que para la consecución de los resultados de aprendizaje se desarrollarán, sin ánimo de redundar en lo anteriormente expuesto, las actividades siguientes:

Actividades genéricas presenciales:

  • Clases teóricas: Se explicarán los conceptos teóricos de la asignatura y se desarrollarán ejemplos prácticos ilustrativos como apoyo a la teoría cuando se crea necesario.
  • Clases prácticas: Se realizarán problemas y casos prácticos como complemento a los conceptos teóricos estudiados.
  • Prácticas de laboratorio: Trabajos tutorados por el profesro en grupos de no más de 20 alumnos.

Actividades genéricas no presenciales:

  • Estudio y asimilación de la teoría expuesta en las clases magistrales.
  • Comprensión y asimilación de problemas y casos prácticos resueltos en las clases prácticas.
  • Preparación de seminarios, resolución de problemas propuestos, etc.
  • Preparación de las prácticas en grupo, elaboración de los guiones e informes correspondientes.
  • Preparación de las pruebas escritas de evaluación continua y exámenes finales.

La asignatura consta de 6 créditos ECTS, lo cual representa 150 horas de trabajo del alumno/a en la asignatura durante el semestre, es decir, 10 horas semanales durante 15 semanas lectivas.

Un resumen de la distribución temporal orientativa de una semana lectiva puede verse en la tabla siguiente. Estos valores se obtienen de la ficha de la asignatura de la Memoria de Verificación del título de grado, teniéndose en cuenta que el grado de experimentalidad considerado para dicha asignatura es bajo.


Horas semana lectiva

Clases magistrales




Otras actividades


No obstante la tabla anterior podrá quedar más detallada, teniéndose en cuenta la distribución global siguiente:

  • 44 horas de clase magistral, con un 40 % de exposición teórica y un 60 % de resolución de problemas tipo.
  • 12 horas de prácticas y trabajos tutelados, en sesiones de 2 horas en semanas alternas.
  • 4 horas de pruebas de evaluación escrita, a razón de dos horas por prueba.
  • 40 Horas de trabajo en grupo, repartidas a lo largo de las 15 semanas de duración del semestre.
  • 50 horas de estudio personal, repartidas a lo largo de las 15 semanas de duración del semestre.

4.3. Programa

Temario propuesto

  1. Introducción a los sistemas de control digitales
  2. Secuencias
  3. Transformada Z
  4. Sistemas discretos
  5. Sistemas muestreados
  6. Análisis dinámico de sistemas discretos
  7. Síntesis de reguladores discretos

Prácticas propuestas

  1. Diseño de reguladores por el método de la frecuencia, avanzo y atraso
  2. Diseño de filtros digitales discretos
  3. Sensores digitales
  4. Controladores PID discretizados
  5. Diseño de sistemas discretos por el método de los polos dominantes.




Apuntes de teoría del temario / Problemas temario


Presentaciones temario / Problemas temario / Enlaces de interés


4.4. Planificación de las actividades de aprendizaje y calendario de fechas clave

El cronograma orientativo que recoge el desarrollo de las actividades se presentará en

Las fechas de los exámenes finales serán las publicadas de forma oficial en

Las pruebas de evaluación escrita estarán relacionadas con los temas siguientes:

  • Prueba 1: Tema 1, 2, 3 y 4.
  • Prueba 2: Tema 5, 6 y 7.

Al final de cada tema se propondrán una serie de ejercicios de refuerzo que ayudarán a guiar el estudio personal del alumno.



Las actividades de la asignatura y su organización temporal, dependen de la organización docente propuesta por la Escuela Politécnica de la Almunia y se pueden consultar en el apartado Actividades y recursos.

Las fechas de exámenes de convocatoria se publicarán en la página web del centro

4.5. Bibliografía y recursos recomendados