Syllabus query



Curso : 2019/2020

29800 - Matemáticas I


Información del Plan Docente

Año académico:
2019/20
Asignatura:
29800 - Matemáticas I
Centro académico:
110 - Escuela de Ingeniería y Arquitectura
326 - Escuela Universitaria Politécnica de Teruel
Titulación:
440 - Graduado en Ingeniería Electrónica y Automática
444 - Graduado en Ingeniería Electrónica y Automática
Créditos:
6.0
Curso:
440 - Graduado en Ingeniería Electrónica y Automática: 1
444 - Graduado en Ingeniería Electrónica y Automática: 1
Periodo de impartición:
440 - 440-Primer semestre o Segundo semestre
444-Primer semestre
107-Primer semestre
444 - Primer semestre
Clase de asignatura:
Formación básica
Materia:
Matemáticas

1.Información Básica

1.1.Objetivos de la asignatura

La ingeniería y las matemáticas se desarrollan de forma paralela. Todas las ramas de la ingeniería dependen de las matemáticas para su descripción y numerosos problemas de la ingeniería han estimulado e incluso iniciado ramas de las matemáticas. Así que es importante que los alumnos reciban una base sólida en matemáticas, con tratamientos relacionados a sus intereses y problemas.

En la asignatura de Matemáticas I se persiguen los siguientes objetivos:

  • Desarrollar la capacidad lógico-deductiva mediante la resolución de  problemas básicos del cálculo diferencial e integral de funciones de una y varias variables como el cálculo  de límites, de derivadas, de derivadas parciales y vector tangente, de máximos y mínimos, de primitivas, el estudio local de una función, el desarrollo en serie de potencias.
  • Conocer y aplicar  herramientas informáticas para la resolución práctica de algunos problemas de los considerados anteriormente.
  • Proporcionar las herramientas y los conocimientos necesarios para el desarrollo de otras materias que forman parte del plan de estudios.
  • Colaborar al desarrollo de  competencias  generales asociadas a la labor del futuro ingeniero como la capacidad para resolver problemas y tomar decisiones con iniciativa, creatividad y razonamiento crítico, la capacidad para aprender de forma continuada y desarrollar estrategias de aprendizaje autónomo.

1.2.Contexto y sentido de la asignatura en la titulación

Las matemáticas son una herramienta básica para el desarrollo de la gran mayoría de las asignaturas del grado. Los contenidos que se tratarán en esta asignatura tienen gran aplicación práctica en otras disciplinas de la titulación. El lenguaje, modo de razonar y capacidad de abstracción propios de las matemáticas, facilitará al alumno la comprensión de dichas asignaturas.

1.3.Recomendaciones para cursar la asignatura

Para cursar la asignatura se recomienda poseer los conocimientos y destrezas adquiridos en las asignaturas de Matemáticas del Bachillerato de Ciencias.

El estudio y trabajo continuado, desde el primer día del curso, son fundamentales para superar con el máximo aprovechamiento la asignatura.

Es importante resolver cuanto antes las dudas que puedan surgir, para lo cual el estudiante cuenta con la asesoría del profesor, tanto durante las clases como en las horas de tutoría destinadas a ello.  También se pueden realizar consultas puntuales a través de correo electrónico.

2.Competencias y resultados de aprendizaje

2.1.Competencias

Competencias específicas:

  • Capacidad para la resolución de los problemas matemáticos que puedan plantearse en la Ingeniería. Aptitud para aplicar los conocimientos sobre: álgebra Lineal; geometría; geometría diferencial; cálculo diferencial e integral; ecuaciones diferenciales y en derivadas parciales; métodos numéricos; algorítmica numérica; estadística y optimización (esta asignatura de la materia "Matemáticas" contribuye en concreto a lo relacionado con cálculo diferencial e integral, métodos numéricos y optimización).

Competencias genéricas:

  • Capacidad para resolver problemas y tomar decisiones con iniciativa, creatividad y razonamiento crítico.
  • Capacidad para comunicar y transmitir conocimientos, habilidades y destrezas en castellano.
  • Capacidad para aprender de forma continuada y desarrollar estrategias de aprendizaje autónomo. Capacidad para aplicar las tecnologías de la información y de las comunicaciones.

2.2.Resultados de aprendizaje

El estudiante, para superar esta asignatura, deberá demostrar los siguientes resultados...

  • Resuelve problemas matemáticos que pueden plantearse en Ingeniería.
  • Tiene aptitud para aplicar los conocimientos adquiridos de Cálculo Diferencial e Integral, Métodos Numéricos relacionados y optimización.
  • Sabe utilizar métodos numéricos en la resolución de algunos problemas matemáticos que se le plantean. Conoce el uso reflexivo de herramientas de cálculo simbólico y numérico.
  • Posee habilidades propias del pensamiento científico-matemático, que le permiten preguntar y responder a determinadas cuestiones matemáticas.
  • Tiene destreza para manejar el lenguaje matemático; en particular, el lenguaje simbólico y formal.

2.3.Importancia de los resultados de aprendizaje

Los resultados de aprendizaje de la asignatura de Matemáticas I son importantes porque proporcionan a los estudiantes los conocimientos matemáticos y procedimentales que se encuentran en la base de otras asignaturas de carácter científico-tecnológico del grado como Termodinámica, Mecánica de Fluidos, Electrotecnia, Electrónica, Señales y Sistemas.

3.Evaluación

3.1.Tipo de pruebas y su valor sobre la nota final y criterios de evaluación para cada prueba

Se propone un sistema de evaluación global, si bien con el fin de incentivar el trabajo continuado del alumnado a lo largo del semestre, se podrán programar las siguientes actividades de carácter voluntario que podrán suponer una anticipación de algunas partes de la prueba global.

  • Realización de una prueba intermedia sobre los contenidos teórico prácticos desarrollados en la primera parte de la asignatura.

Esta prueba consistirá en la resolución de varios problemas relacionados con los contenidos desarrollados en la primera parte de la asignatura (parte 1ª). Esta prueba tendrá lugar hacia mitad de semestre y podrá suponer un 30% sobre la calificación final de la asignatura siempre que la calificación obtenida PI (sobre 3 puntos) sea mayor o igual que 1.5 puntos. 

  • Trabajos Académicos.

Se propondrán trabajos para que sean realizados por los estudiantes en grupo. Tras la presentación de los resultados obtenidos, la calificación asignada TA (sobre 1.5 puntos)  no tendrá que ser necesariamente la misma para todos componentes del grupo.

El estudiante deberá demostrar que ha alcanzado los resultados de aprendizaje previstos mediante la realización de una prueba global con las siguientes características.

 

Prueba global de todos los contenidos desarrollados en la asignatura.

Se realizará en la convocatoria oficial de exámenes programada por la EINA. Esta prueba consistirá en la resolución de varios problemas relacionados con los contenidos desarrollados en la asignatura y estará dividida en los siguientes bloques: 

  • Bloque 1: se valorará con una calificación C1 (sobre 3 puntos).  Este bloque contendrá problemas relacionados con los contenidos desarrollados en la primera parte de la asignatura (parte 1ª). A los estudiantes que hayan obtenido en la prueba intermedia señalada anteriormente una calificación PI mayor o igual que 1.5 (sobre 3 puntos) y que no realicen las preguntas de este bloque se les asignará C1=PI,  
  • Bloque 2: se valorará con una calificación C2 (sobre 3,5 puntos).  Este bloque contendrá problemas relacionados con los contenidos desarrollados en la segunda parte de la asignatura. 
  • Bloque Prácticas: se valorará con una calificación CP (sobre 2 puntos). Este bloque contendrá problemas relacionados con los contenidos de la asignatura desarrollados en las sesiones de prácticas.
  • Bloque Trabajos Académicos: se valorará con una calificación CT (sobre 1,5 puntos).  Este bloque contendrá problemas relacionados con cualquiera de los contenidos de la asignatura que hayan sido considerados en los Trabajos Académicos propuestos. A los estudiantes que no realicen las preguntas de este bloque se les asignará la calificación CT=TA.         

  

La calificación final de la asignatura, será

F =  C1+ C2+CP+CT.

 

Para superar la asignatura, el alumno deberá obtener una nota final no inferior a 5.

  

En todas las pruebas descritas anteriormente se evaluará:

 

  • el entendimiento de los conceptos matemáticos usados para resolver los problemas,
  • el uso correcto de estrategias y procedimientos eficientes en su resolución,
  • la claridad y detalle de las explicaciones,
  • la ausencia de errores matemáticos en las soluciones,
  • el uso adecuado de la terminología y de la notación,
  • la exposición ordenada, clara y organizada,
  • el lenguaje matemático utilizado.

4.Metodología, actividades de aprendizaje, programa y recursos

4.1.Presentación metodológica general

El proceso de aprendizaje que se ha diseñado para esta asignatura se basa en lo siguiente:

-          Clases magistrales (42 horas).

-          Resolución de problemas y ejercicios

-          Prácticas de ordenador (6 sesiones de 2 horas)

-          Tutorías

-          Examen parcial

-          Examen final (3 horas)

4.2.Actividades de aprendizaje

El programa que se ofrece al estudiante para ayudarle a lograr los resultados previstos comprende las siguientes actividades...

  • Clases Magistrales en el grupo de docencia correspondiente donde se presentarán al alumnado los conocimientos que los estudiantes deben adquirir.
  • Resolución de ejercicios que servirán a los estudiantes como autoevaluación y le ayudarán a adquirir las competencias y habilidades necesarias.
  • Sesiones prácticas con ordenador orientadas al conocimiento práctico relacionado con los temas desarrollados en el curso.
  • Tutorías, individuales y voluntarias, en las que los estudiantes tendrán la oportunidad de exponer al profesor sus dudas y preguntarle sobre los contenidos desarrollados. El horario y lugar de las tutorías será establecido por el profesor al principio de curso.

Además el alumno tendrá la posibilidad de realizar el Curso en Gestión de la Información para estudiantes de primer curso (organizado e impartido por la biblioteca Hypatia).

4.3.Programa

 

TEMA 1. NÚMEROS REALES

  • La recta real. Intervalos. Desigualdades. Valor absoluto. Conjuntos en la recta real.

TEMA 2. INTRODUCCIÓN A LOS NÚMEROS COMPLEJOS

  • Definición. Suma y producto. Conjugado. Módulo y argumento. Exponencial compleja. Potencias y raíces de números complejos.

TEMA 3. LÍMITES Y CONTINUIDAD DE FUNCIONES DE UNA VARIABLE

  • Funciones elementales. Composición de funciones. Función inversa. Coordenadas polares y representación de funciones. Límites de funciones, principales propiedades. Evaluación de límites. Funciones continuas, propiedades y teoremas principales.

TEMA 4: CÁLCULO DIFERENCIAL DE FUNCIONES DE UNA VARIABLE

  • Definición de derivada, interpretación geométrica, reglas de derivación. Teoremas principales. Extremos de funciones. Polinomio de Taylor: definición, principales teoremas. Cálculo de límites con el polinomio de Taylor. Aproximación de funciones  por polinomios.

TEMA 5: INTEGRACIÓN DE FUNCIONES DE UNA VARIABLE

  • Primitivas, reglas de integración, integración por partes y descomposición en suma de fracciones simples. Cambios de variable y otros métodos de cálculo de primitivas. Integrales definidas y el Teorema fundamental del Cálculo. Aplicaciones de las integrales: áreas, volúmenes y longitudes. Aplicaciones físicas de la integral definida.

TEMA 6: FUNCIONES DE VARIAS VARIABLES

  • Límites y continuidad. Derivadas direccionales. Derivadas parciales.  Diferenciabilidad. Regla de la Cadena. Integración.

4.4.Planificación de las actividades de aprendizaje y calendario de fechas clave

Las clases magistrales y de problemas y las sesiones de prácticas en el laboratorio se imparten según el horario establecido por el centro, que es publicado con anterioridad a la fecha de comienzo del curso. Asimismo, cada profesor informará de su horario de atención de tutoría.

El calendario detallado de las diversas actividades a desarrollar se establecerá una vez que la Universidad y el Centro hayan aprobado el calendario académico (el cual podrá ser consultado en la web del centro).

La relación y fecha de las diversas actividades, junto con todo tipo de información y documentación sobre la asignatura, se publicará en http://add.unizar.es/ (Nota. Para acceder a esta web el estudiante requiere estar matriculado).

A título orientativo:

  • Cada semana hay programadas 3 h de clases en aula.
  • Cada dos semanas el estudiante realizará una práctica de laboratorio.
  • Las actividades adicionales que se programen (trabajos y/o pruebas parciales, etc) se anunciarán con suficiente antelación, tanto en clase como en http://add.unizar.es/
  • Las fechas de los exámenes y pruebas de convocatoria oficial las fijará la dirección del Centro.

4.5.Bibliografía y recursos recomendados

http://biblos.unizar.es/br/br_citas.php?codigo=29800&year=2019


Year : 2019/2020

29800 - Mathematics I


Syllabus Information

Academic Year:
2019/20
Subject:
29800 - Mathematics I
Faculty / School:
110 -
326 -
Degree:
440 - Bachelor's Degree in Electronic and Automatic Engineering
444 - Bachelor's Degree in Electronic and Automatic Engineering
ECTS:
6.0
Year:
440 - Bachelor's Degree in Electronic and Automatic Engineering: 1
444 - Bachelor's Degree in Electronic and Automatic Engineering: 1
Semester:
440 - 440-First semester o Second semester
444-First semester
107-First semester
444 - First semester
Subject Type:
Basic Education
Module:
---

1.General information

1.1.Aims of the course

1.2.Context and importance of this course in the degree

1.3.Recommendations to take this course

2.Learning goals

2.1.Competences

2.2.Learning goals

2.3.Importance of learning goals

3.Assessment (1st and 2nd call)

3.1.Assessment tasks (description of tasks, marking system and assessment criteria)

4.Methodology, learning tasks, syllabus and resources

4.1.Methodological overview

The methodology followed in this course is oriented towards the achievement of the learning objectives. A wide range of teaching and learning tasks are implemented, such as lectures, problem-solving, computer sessions, tutorials, exams, and autonomous work and study.

4.2.Learning tasks

This course is organized as follows:

  • Lectures (42 hours). Whole group sessions where the knowledge that the students must acquire will be presented.
  • Problem-solving. Resolution of exercises by the student that will serve as self-evaluation and to acquire the necessary skills.
  • Computer sessions (Six 2-hour sessions). Oriented to practical knowledge related to the fields of the course.
  • Tutorials, individual and voluntary, in which students will have the possibility to ask their doubts and questions on the topics to the teacher. The time and place of these sessions will be set by the teacher at the beginning of the course.
  • Assessment tasks. One midterm exam will take place as well as one 3-hour long final exam.

 

In addition, the students will have the possibility to attend the Course on Information Management for first-year students (organized and taught by the Hypatia library staff).

4.3.Syllabus

This course will address the following topics:

 

 TOPIC 1. REAL NUMBERS

-   The real line. Intervals. Inequalities. Absolute value. Sets in the real line.

 

TOPIC 2. INTRODUCTION TO COMPLEX NUMBERS

-   Definition. Sum and Product. Conjugate. Modulus and Argument. Complex Exponential. Powers and Roots of Complex Numbers.

 

TOPIC 3. LIMITS AND CONTINUITY OF FUNCTIONS OF ONE  VARIABLE

-   Elementary functions. Composition of functions. Inverse function. Polar coordinates and sketch of graphs of functions. Limits of functions. Definition, main theorems. Evaluation of limits. Continuous functions, properties, and main theorems.

 

TOPIC 4: DIFFERENTIAL CALCULUS IN ONE VARIABLE

-   Differentiation of functions: definition, differentiation rules, interpretation.  Main theorems on differentiation. Extrema of functions. Taylor polynomial: definition, main theorems. Evaluation of limits with Taylor polynomial. Approximation of functions by polynomials.

 

TOPIC 5: INTEGRATION OF FUNCTIONS OF ONE VARIABLE

-   Antiderivatives, integration rules, integration by parts and by decomposition in simple fractions. Integration by substitution and other methods to evaluate integrals. Definite integral and the fundamental theorem of calculus. Applications of integration: areas, volumes, and length. Physical applications of the definite integral.

 

TOPIC 6:  FUNCTIONS OF SEVERAL VARIABLES

-   Limits and continuity.  Directional derivatives.  Partial Derivatives.  Differentiability. Derivatives and Chain Rule. Integration

4.4.Course planning and calendar

The time and place of lectures and computer sessions will be set by the Center.

The time and place of tutorials will be set by the teacher at the beginning of the course.

 

4.5.Bibliography and recommended resources

http://biblos.unizar.es/br/br_citas.php?codigo=29800&year=2019