Teaching Guides Query



Academic Year: 2019/20

434 - Bachelor's Degree in Mechanical Engineering

29708 - Statistics


Teaching Plan Information

Academic Year:
2019/20
Subject:
29708 - Statistics
Faculty / School:
110 - Escuela de Ingeniería y Arquitectura
Degree:
434 - Bachelor's Degree in Mechanical Engineering
ECTS:
6.0
Year:
1
Semester:
434-First semester o Second semester
107-Second semester
Subject Type:
Basic Education
Module:
---

1. General information

2. Learning goals

3. Assessment (1st and 2nd call)

4. Methodology, learning tasks, syllabus and resources

4.1. Methodological overview

The methodology followed in this course is oriented towards the achievement of the learning objectives. It is based on participation and the active role of the student favours the development of communication and decision-making skills. A wide range of teaching and learning tasks are implemented, such as lectures, guided assignments, laboratory sessions, autonomous work and tutorials.

Students are expected to participate actively in the class throughout the semester.

Classroom materials will be available via Moodle. These include a repository of the lecture notes used in class, the course syllabus, as well as other course-specific learning materials.

Further information regarding the course will be provided on the first day of class. The proposed methodology seeks to encourage the student's continued work and focuses on the most Practices of Statistics: the work with real data.

In the sessions with the complete group, theoretical aspects are treated in the form of a Lecture, that complements each other with its application to solve problems of real nature in the classes of problems in small groups.

The processing of real data is done in sessions in the computer lab using computer programs, and, in addition, basic problems of Optimization are solved by the computer.

The evaluation focuses on both theoretical and applied aspects according to the evaluation criteria established.

4.2. Learning tasks

The course includes 6 ECTS organized according to:

- Lectures (3 ECTS): 30 hours.

- Laboratory sessions (1.5 ECTS): 15 hours.

- Guided assignments (1.5 ECTS): 15 hours.

- Autonomous work: 90 hours.

- Tutorials: 6 hours/week

Lectures: the professor will explain the theoretical contents of the course and solve illustrative applied problems. These problems and exercises can be found in the problem set provided at the beginning of the semester. Lectures run for 2 weekly hours. Although it is not a mandatory activity, regular attendance is highly recommended.

Laboratory sessions: sessions will take place every 2 weeks (6 sessions in total) and last 2.5 hours each. Students will work together in groups actively doing tasks such as practical demonstrations, measurements, calculations, and the use of graphical and analytical methods.

Guided assignments: students will complete assignments, problems and exercises related to concepts seen in laboratory sessions and lectures. Guided assignments run for 1 weekly hour. They will be submitted at the beginning of every laboratory sessions to be discussed and analyzed. If assignments are submitted later, students will not be able to take the assessment test.

Autonomous work: students are expected to spend about 90 hours to study theory, solve problems, prepare lab sessions, and take exams.

Tutorials: the professor's office hours will be posted on Moodle and the degree website to assist students with questions and doubts. It is beneficial for the student to come with clear and specific questions.

4.3. Syllabus

The course will address the following topics: 

Sections 

Section 1: Exploratory data analysis in the computer laboratory.

Section 2: Models of the probability distribution.

Section 3: Sampling, estimation and hypothesis tests.

Section 4: Introduction to Optimization.

Section 1: Exploratory Data Analysis

Descriptive statistics

Basic concepts. Types of variables.

Data organization. Frequency table.

Graphic descriptions of a variable.

Numerical descriptions of a variable. Box-plot.

Bidimensional distributions. Bidimensional table.

Marginal and conditional distributions.

Measures of association. Regression and correlation.

Section 2: Models of the probability distribution

Basic concepts. Sample space and events, algebra of events. Random and deterministic experiments.

Interpretations of probability.

Kolmogorov axiomatic definition.

Conditional probability. Independence of events.

Partition of a sample space, law of total probability and Bayes theorem.

Reliability of systems.

Random variables

Definition of random variable. Classification.

Discrete random variable, probability function, distribution function.

Continuous random variable, density function, distribution function.

Expectation of a random variable and of a function of a random variable.

Basic properties of expectation and variance

Moments of a random variable.

Other measures of central tendency and dispersion.

Chebyshev inequality.

Main discrete distributions: Bernoulli, binomial, Poisson, geometric, hypergeometric.

Main continuous distributions: uniform, exponential, normal.

Reproductivity of random variables.

Poisson process: relationship to exponential distribution.

Approximations between random variables.

Two-dimensional distributions. Calculation of expectations and variances of a linear combination of independent random variables.

Section 3: Sampling, estimation and hypothesis tests

Sampling and Estimation

Introduction. Basic concepts associated with sampling distributions in normal populations: chi-square, Student's t, F.

Distributions important statistical sampling: Central Limit Theorem and Fisher theorem.

Confidence interval estimation. Intervals for means, variances and proportions. Calculation of the minimum sample size.

Hypothesis tests: null and alternative hypothesis, level of significance.

Relationship between confidence intervals and hypothesis tests.

Calculating the p-value.

Hypothesis testing for means, variances and proportions.

Chi-square and tests of contingency tables.

Section 4: Introduction to Optimization

Optimization problems

Decision variables, objective function and constraints.

Linear programming problems: graphic resolution.

Contents of Practical classes in the computer laboratory

• Uni-dimensional descriptive statistics.

• Instructions for implementation of the Statistical Report.

• Two-dimensional Descriptive Statistics. Regression and correlation.

• Probability distributions of discrete and continuous random variables.

• Test goodness of fit.

• Hypothesis testing for means, variances and proportions.

• Introduction to Optimization.

4.4. Course planning and calendar

For further details concerning the timetable, classroom and further information regarding this course please refer to the "Escuela de Ingeniería y Arquitectura " website (https://eina.unizar.es/)


Curso Académico: 2019/20

434 - Graduado en Ingeniería Mecánica

29708 - Estadística


Información del Plan Docente

Año académico:
2019/20
Asignatura:
29708 - Estadística
Centro académico:
110 - Escuela de Ingeniería y Arquitectura
Titulación:
434 - Graduado en Ingeniería Mecánica
Créditos:
6.0
Curso:
1
Periodo de impartición:
434-Primer semestre o Segundo semestre
107-Segundo semestre
Clase de asignatura:
Formación básica
Materia:
Estadística

1. Información Básica

1.1. Objetivos de la asignatura

En esta asignatura se cubren aspectos de recopilación, presentación, análisis y tratamiento de datos, así como de extracción de conclusiones a partir de la información que proporcionan. La inferencia estadística juega un papel importante en la aplicación de muchas técnicas estadísticas que podrán ser de utilidad en el ejercicio profesional del ingeniero mecánico. Además, el estudiante aprende a modelar situaciones reales en presencia de incertidumbre. Finalmente se introducen aspectos elementales de Optimización que juegan un papel determinante en la toma de decisiones.

El objetivo final es que el alumno integre los conocimientos que se cursan en la asignatura en el contexto formativo de la titulación y, en la medida posible, sea autosuficiente en la utilización de las técnicas estadísticas en el desarrollo de sus labores profesionales.

1.2. Contexto y sentido de la asignatura en la titulación

La asignatura es obligatoria y forma parte de la formación básica de los estudiantes. Se ubica en el segundo cuatrimestre de primer curso, una vez que el estudiante ha adquirido una formación básica en Matemáticas. Se imparte simultáneamente con las asignaturas de Fundamentos de Informática, Matemáticas II y Física II de formación básica e Ingeniería del medio ambiente, específica de la rama industrial.

La asignatura será de utilidad para el futuro graduado en Ingeniería Mecánica al dotarle de una base científica que le guiará en la toma de decisiones al analizar información procedente de bases de datos como, por ejemplo, los tomados en asignaturas tales como Fundamentos de ingeniería de materiales o de Resistencia de materiales que el estudiante cursará en segundo, en Tecnologías de fabricación de tercer curso y en Organización y dirección de empresas de cuarto, entre otras. Asimismo se le proporciona una base sólida modelizar situaciones reales de naturaleza aleatoria.

La mejora de la calidad, el diseño de nuevos productos y procesos de fabricación y el perfeccionamiento de los sistemas existentes, son actividades propias de un ingeniero mecánico. Las técnicas estadísticas constituyen una herramienta imprescindible para llevarlas a cabo pues proporcionan métodos descriptivos y analíticos para abordar el tratamiento de datos, transformándolos en información. El análisis de la fiabilidad de componentes y sistemas tiene relevancia por sí mismo al diseñar un nuevo producto. Un aspecto importante es la garantía que se va a ofrecer, asociada al análisis de la distribución del tiempo de vida, concepto que se estudia en esta asignatura.

1.3. Recomendaciones para cursar la asignatura

Se aconseja a los alumnos cursar la asignatura de manera presencial. Los alumnos que sigan de forma presencial y continuada la asignatura deberán superar las pruebas de evaluación programadas a lo largo del curso. Aquellos que no sigan la asignatura de forma presencial y continuada deberán superar una prueba de evaluación final referente a todos los módulos de contenido.

Es recomendable que el estudiante posea conocimientos básicos de cálculo integral y diferencial.

2. Competencias y resultados de aprendizaje

2.1. Competencias

Competencias específicas:

C12: Capacidad para la resolución de los problemas matemáticos que puedan plantearse en la ingeniería. Aptitud para aplicar los conocimientos sobre estadística y optimización.

Competencias genéricas:

C4: Capacidad para resolver problemas y tomar decisiones con iniciativa, creatividad y razonamiento crítico.

C5: Capacidad para comunicar y transmitir conocimientos, habilidades y destrezas en castellano.

2.2. Resultados de aprendizaje

  1. Aplica las técnicas de tratamiento y análisis de datos.
  2. Conoce los conceptos, aplicaciones y resultados fundamentales de la probabilidad.
  3. Comprende los conceptos de variable aleatoria unidimensional y multidimensional.
  4. Domina el modelado de entornos de la ingeniería bajo naturaleza estocástica mediante variables aleatorias y sus aplicaciones en situaciones de incertidumbre.
  5. Conoce las técnicas de muestreo y estimación.
  6. Sabe cómo utilizar contrastes de hipótesis estadísticas y su aplicación en la toma de decisiones.
  7. Tiene capacidad para la elaboración, comprensión y crítica de informes basados en análisis estadísticos.
  8. Tiene capacidad para identificar y formular problemas de optimización.

2.3. Importancia de los resultados de aprendizaje

Esta asignatura enseña los principios básicos de la toma de decisiones en presencia de incertidumbre. Los estudiantes desarrollan competencias para abordar problemas reales y para trabajar con datos reales y aprenden a reconocer y manejar modelos que sirven para resolver diferentes situaciones en presencia de aleatoriedad.

Un ingeniero mecánico debe manejar con regularidad información procedente de bases de datos y ha de estar capacitado para tomar decisiones a partir del análisis de la misma. La toma de decisiones requiere un tratamiento exploratorio de los datos así como el planteamiento de contrastes de hipótesis, con lo que se hacen imprescindibles las técnicas estadísticas.

Los estudiantes aprenden a plantear y resolver problemas sencillos de Optimización.

Además, los estudiantes trabajan en grupo y con datos reales, por lo que también desarrollan competencias de colaboración en equipo en la resolución de problemas reales.

3. Evaluación

3.1. Tipo de pruebas y su valor sobre la nota final y criterios de evaluación para cada prueba

Evaluación global: 

La evaluación global de la asignatura comprende las siguientes actividades realizadas de forma continuada a lo largo del curso:

  1. Una prueba escrita realizada de manera individual por el grupo completo de estudiantes, durante el periodo de docencia de la asignatura, referente al módulo Modelos de distribución de probabilidad. (Resultados del aprendizaje 2, 3 y 4).
  2. Una prueba escrita realizada de manera individual por el grupo completo de estudiantes, en la convocatoria oficial de la asignatura, referente al módulo Muestreo, estimación y contrastes de hipótesis. (Resultados del aprendizaje 5 y 6).
  3. Una prueba escrita realizada de manera individual por el grupo completo de estudiantes referente a los contenidos desarrollados en las clases de prácticas de la asignatura en laboratorio informático a realizar durante el periodo de docencia de la asignatura y/o en la convocatoria oficial. (Resultados del aprendizaje 1, 2, 3, 4, 5, 6, 7 y 8).
  4. Un informe estadístico realizado por el grupo completo de estudiantes, donde aplique algunas de las diferentes técnicas estadísticas estudiadas a lo largo del curso, y a realizar antes de la convocatoria oficial. (Resultados del aprendizaje 1, 2, 3, 4, 5, 6, 7 y 8).

Los alumnos que no realicen la prueba propuesta en el punto 1 anterior programada durante el curso, correspondiente a la evaluación global, deberán realizarla en la convocatoria oficial de la asignatura.

Criterios de evaluación:

En la evaluación se considerarán los siguientes aspectos:

  • El problema deberá estar correctamente planteado.
  • Deberán definir correctamente las variables utilizadas en el problema planteado.
  • El modelo de distribución de probabilidades asignado a cada variable aleatoria deberá estar debidamente justificado.
  • Errores graves en conceptos básicos de la asignatura supondrán la anulación de la puntuación otorgada a la cuestión o problema correspondiente.

Niveles de exigencia: 

La prueba correspondiente al módulo Modelos de distribución de probabilidad supone un 40% de la calificación final y la prueba correspondiente al módulo Muestreo, estimación y contrastes de hipótesis supone un 20% de la calificación final. Para superar el 60% que suponen ambas, el alumno ha de obtener una nota de al menos 4 puntos (sobre 10) en cada una de ellas y una media ponderada de al menos 4.5 puntos (sobre 10).

Los resultados de aprendizaje relativos a la destreza en el análisis estadístico de datos se evaluarán con la calificación conjunta del Informe Estadístico (20% de la calificación final) y una prueba escrita (20% de la calificación final). Para superar el 40% que suponen ambas, el alumno ha de obtener al menos 4 puntos (sobre 10) en cada una de ellas y una media de al menos 5 puntos (sobre 10) en estas actividades.

Para superar la asignatura el alumno deberá obtener una nota final de al menos 5 puntos, sobre 10.

La prueba global de evaluación constará de una prueba escrita de carácter obligatorio equivalente a las pruebas descritas en los puntos 1, 2 y 3, además de la realización del Informe Estadístico contemplado en el punto 4. El porcentaje de la nota final de la prueba 1 es el 40% y el de cada una de las tres pruebas restantes el 20%. La prueba correspondiente al Informe Estadístico se desarrollará durante el periodo de tiempo de exámenes fijado por la EINA.

4. Metodología, actividades de aprendizaje, programa y recursos

4.1. Presentación metodológica general

La metodología que se propone trata de fomentar el trabajo continuado del estudiante y se centra en los aspectos más prácticos de la Estadística: el trabajo con datos reales.

En las sesiones con el grupo completo se tratan aspectos teóricos en forma de clase magistral que se complementan con su aplicación a la resolución de problemas de naturaleza real en las clases de problemas en grupos reducidos.

El tratamiento de datos reales se realiza en las sesiones en el laboratorio informático utilizando programas informáticos y, además, se resuelven mediante ordenador problemas básicos de Optimización.

La evaluación se centra tanto en aspectos teóricos como aplicados de acuerdo con los criterios de evaluación establecidos.

4.2. Actividades de aprendizaje

La asistencia a todas las actividades de aprendizaje es de especial relevancia para adquirir las competencias de la asignatura.

La asignatura se articula con 4 horas de clase presencial a la semana durante las 15 semanas que dura el cuatrimestre. De ellas, 2 horas se imparten al grupo completo para la exposición de los conceptos teóricos y ejemplos. Otras 2 horas se imparten a grupos reducidos, para desarrollar destrezas en el planteamiento de problemas reales (modelado o selección de la técnica adecuada), resolución e interpretación de los resultados.

De forma más específica:

Clases magistrales (30 horas con el grupo completo de alumnos).

En estas sesiones se tratan aspectos teóricos en forma de clase magistral participativa para facilitar su asimilación. El seguimiento de estas clases es fundamental para la consolidación y el buen desarrollo del aprendizaje programado.

Clases de resolución de problemas (15 horas en grupos reducidos).

Clases de resolución de casos prácticos (15 horas en grupos reducidos).

Las clases magistrales se complementan con sesiones de resolución de problemas y casos prácticos. Las sesiones de laboratorio informático están diseñadas para que el alumno maneje programas informáticos de apoyo en la resolución de problemas y para el análisis de datos con ejercicios que suponen por un lado, la selección de la técnica adecuada a aplicar a los datos y por otro lado, la interpretación de los resultados obtenidos. Durante estas clases se programan actividades para incorporar estrategias metodológicas participativas que favorecen el aprendizaje.

Trabajo práctico tutelado (15 horas de trabajo no presencial).

Una actividad programada a lo largo del curso es la realización de un proyecto cuyo resultado es un informe estadístico.

Estudio personal (70 horas de trabajo no presencial).

Evaluación (5 horas de trabajo no presencial).

4.3. Programa

Se plantean los siguientes módulos de aprendizaje:

  1. Módulo 1: Análisis exploratorio de datos en el laboratorio informático.
  2. Módulo 2: Modelos de distribución de probabilidad.
  3. Módulo 3: Muestreo, estimación y contrastes de hipótesis.
  4. Módulo 4: Introducción a la optimización.

Módulo 1: Análisis exploratorio de datos

Estadística descriptiva:

Conceptos básicos, tipos de variables.

Organización de los datos. Tabla de frecuencias.

Descripciones gráficas de una variable.

Descripciones numéricas de una variable. Gráfico-caja.

Distribuciones bidimensionales. Tabla de doble entrada.

Distribuciones marginales y condicionadas.

Medidas de asociación. Regresión y Correlación.

Módulo 2: Modelos de distribución de probabilidad

Conceptos básicos. Experimentos aleatorios y deterministas.

Interpretaciones de la probabilidad.

Definición axiomática de Kolmogorov.

Probabilidad condicionada. Independencia de sucesos.

Sistema completo de sucesos, teorema de la probabilidad total y teorema de Bayes.

Fiabilidad de sistemas.

Variables aleatorias

Definición de variable aleatoria. Clasificación.

Variable aleatoria discreta, función de probabilidad, función de distribución.

Variable aleatoria continua, función de densidad, función de distribución.

Esperanza de una variable aleatoria y de una función de una variable aleatoria.

Momentos de una variable aleatoria.

Otras medidas de centralización y dispersión.

Desigualdad de Tchebychev.

Principales distribuciones discretas: Bernoulli, binomial, Poisson, geométrica, hipergeométrica.

Principales distribuciones continuas: uniforme, exponencial, normal.

Reproductividad de variables aleatorias.

Proceso de Poisson: relación con la distribución exponencial.

Aproximaciones entre variables.

Introducción a las distribuciones bidimensionales. Cálculo de esperanzas y varianzas de combinaciones lineales de variables aleatorias independientes.

Módulo 3: Muestreo, estimación y contrastes de hipótesis

Muestreo y estimación

Introducción. Conceptos básicos.

Distribuciones asociadas al muestreo en poblaciones normales: chi-cuadrado, t de Student, F de

Snedecor-Fisher.

Distribuciones de muestreo de estadísticos importantes: Teoremas central del límite y Teorema de Fisher.

Estimación por intervalo de confianza. Intervalos para medias, varianzas y proporciones.  Cálculo del tamaño muestral mínimo.

Contrastes de Hipótesis. Conceptos básicos: hipótesis nula y alternativa, nivel de significación.

Relación entre intervalos de confianza y contrastes de hipótesis.

Cálculo del p-valor del contraste.

Contrastes para medias, varianzas y proporciones.

Ajuste chi-cuadrado. Tablas de contingencia.

Módulo 4: Introducción a la optimización

Problemas de optimización

Variables de decisión, función objetivo y restricciones.

Problemas de programación lineal: resolución gráfica.

Contenidos de las Prácticas en laboratorio informático

  • Estadística descriptiva unidimensional.
  • Instrucciones para la realización del Informe Estadístico.
  • Estadística descriptiva bidimensional. Regresión y Correlación.
  • Distribuciones de probabilidad de variables aleatorias discretas y continuas.
  • Contraste Bondad del Ajuste.
  • Contrastes de Igualdad de medias, varianzas y proporciones.
  • Introducción a la Optimización.

4.4. Planificación de las actividades de aprendizaje y calendario de fechas clave

La planificación de las sesiones se ajustarán a lo dispuesto en el calendario académico y horarios fijados por el centro.

Los 6 créditos de la asignatura se dividen en 3 ECTS impartidos al grupo completo en los que se harán exposiciones de la teoría y ejemplos que motivan su utilidad en el ámbito de la Ingeniería; y 3 ECTS en grupos reducidos dirigidos a desarrollar destrezas para el planteamiento y la resolución de problemas que se asemejen a situaciones reales. La mitad de estos 3 últimos créditos se llevarán a cabo en el aula de informática.

Se realizarán dos pruebas escritas de evaluación de los módulos Modelos de distribución de probabilidad y de Muestreo, estimación y contrastes de hipótesis y se evaluarán también los contenidos prácticos desarrollados durante el curso.

4.5. Bibliografía y recursos recomendados

La bibliografía actualizada se encuentra en la BR de la BUZ