Syllabus query



Academic Year/course: 2018/19

424 - Bachelor's Degree in Mechatronic Engineering

28811 - Mechanical Engineering


Syllabus Information

Academic Year:
2018/19
Subject:
28811 - Mechanical Engineering
Faculty / School:
175 - Escuela Universitaria Politécnica de La Almunia
Degree:
424 - Bachelor's Degree in Mechatronic Engineering
ECTS:
6.0
Year:
2
Semester:
First semester
Subject Type:
Compulsory
Module:
---

4.1. Methodological overview

Strong interaction between the teacher/student. This interaction is brought into being through a division of work and responsibilities between the students and the teacher. Nevertheless, it must be taken into account that, to a certain degree, students can set their learning pace based on their own needs and availability, following the guidelines set by the teacher.

 

The current subject (Mechanical Engineering ) is conceived as a stand-alone combination of contents, yet organized into three fundamental and complementary forms, which are: the theoretical concepts of each teaching unit, the solving of problems or resolution of questions and laboratory work, at the same time supported by other activities

.

The organization of teaching will be carried out using the following steps:

Theory Classes: Theoretical activities carried out mainly through exposition by the teacher, where the theoretical supports of the subject are displayed, highlighting the fundamental, structuring them in topics and or sections, interrelating them.

 

Practical Classes: The teacher resolves practical problems or cases for demonstrative purposes. This type of teaching complements the theory shown in the lectures with practical aspects.

 

_  Laboratory Workshop: Practical activities will be conducted in the computer room 1.1 software mechanism ( GIM 16.0) with the presence and teacher mentoring.

 

—  Individual Tutorials: Those carried out giving individual, personalized attention with a teacher from the department. Said tutorials may be in person or online

 

4.2. Learning tasks

Programmed learning activities

The programme offered to the student to help them achieve their target results is made up of the following activities...

 

Involves the active participation of the student, in a way that the results achieved in the learning process are developed, not taking away from those already set out, the activities are the following:

Face-to-face generic activities:

Theory Classes: The theoretical concepts of the subject are explained and illustrative examples are developed as support to the theory when necessary.

Practical Classes: Problems and practical cases are carried out, complementary to the theoretical concepts studied.            

Laboratory Workshop: This work is tutored by a teacher, in groups of no more than 20 students.

Generic non-class activities:

● Study and understanding of the theory taught in the lectures.

● Understanding and assimilation of the problems and practical cases solved in the practical classes.

● Preparation of seminars, solutions to proposed problems, etc.

● Preparation of laboratory workshops, preparation of summaries and reports.

● Preparation of the written tests for continuous assessment and final exams.

 

The subject has 6 ECTS credits, which represents 150 hours of student work in the subject during the trimester, in other words, 10 hours per week for 15 weeks of class.

 

A summary of a weekly timetable guide can be seen in the following table. These figures are obtained from the subject file in the Accreditation Report of the degree, taking into account the level of experimentation considered for the said subject is moderate.

 

Activity

Weekly  school hours

Lectures

3

Laboratory Workshop

1

Other Activities

6

4.3. Syllabus

Chapter 1: Structural Analysis of Mechanisms Plans

Introduction: Historical development of the theory of mechanisms and machines

• Terminology mechanisms

• Classifications of elements and kinematic pairs of a mechanism

• Mobility and Degrees of Freedom: Criteria Grübler

• Act Grashoff Theorem and Graphical Analysis

• Obtaining a mechanism kinematic scheme

 

Chapter 2: Kinematic Analysis of Mechanisms Plans

• Statement of the problem Kinematic

• Relative Movement Plano

• Relative Instant Center

• Determination of the instantaneous centers mechanism

• Theorem Aronhold -kennedy

• Calculation of speed of a mechanism analytically

• Calculation of speed of a mechanism graphically

 

Chapter 3: Dynamic Analysis of Mechanisms Plans

• Dynamic Approach problem

• Calculation of acceleration of a mechanism analytically

• Calculation of acceleration of a mechanism graphically

• Forces of inertia mechanisms

• Balance mechanisms

 

Chapter 4: Kinematic Analysis of Gear and Gear Trains

• Gears: Gear Fundamental Law

• Classification of Gears

• Gear Trains

• Classification Gear Trains

• Applications: Differential of a vehicle

 

Chapter 5: Theory of Mechanical Vibrations

• Fundamental concepts in vibration

• Systems degree of freedom

• Free Vibrations in systems of one degree of freedom

• Vibrations systems forced a degree of freedom

• Resonance Phenomenon

 

4.4. Course planning and calendar

 

weeks

 

WEEKLY PLANNING SEMESTER

 

 

 

Topic 1

 

 

Exercise No. 1 Continuous Assessment

 

 

 

 

 

Topic 2

 

Exercise No. 2 Continuous Assessment

 

1st Practice with software GIM (Topic 1 and 2)

 

1st Written Test (Topic 1 and 2)

 

 

 

 

 

Topic 3

 

Exercise No. 3 Continuous Assessment

 

2nd Practice with software GIM (Topic 3)

 

2nd Written Test (Topic 3)

 

 

The weekly schedule of the subject will be published at http://www.eupla.unizar.es/asuntos-academicos/calendario-y-horarios

The dates of the global evaluation test (official calls) will be published at http://www.eupla.unizar.es/asuntos-academicos/examenes

 

 

10ª

11ª

12ª

 

 

 

 

 

Topic 4

 

Exercise No. 4 Continuous Assessment

 

 

3rd Written Test (Topic 4)

 

13ª

14ª

15ª

 

 

Topic 5

 

Exercise No. 5 Continuous Assessment

4th Written Test ( Topic 5)

4.5. Bibliography and recommended resources

 

Material

Format

Topic theory notes

Topic problems

Paper/repository

Topic theory notes

Topic presentations

Topic problems

Related links

Digital/Moodle

E-Mail

Educational software  GIM 16

Web page: http://www.ehu.eus/compmech/software/


Curso Académico: 2018/19

424 - Graduado en Ingeniería Mecatrónica

28811 - Ingeniería Mecánica


Información del Plan Docente

Año académico:
2018/19
Asignatura:
28811 - Ingeniería Mecánica
Centro académico:
175 - Escuela Universitaria Politécnica de La Almunia
Titulación:
424 - Graduado en Ingeniería Mecatrónica
Créditos:
6.0
Curso:
2
Periodo de impartición:
Primer semestre
Clase de asignatura:
Obligatoria
Módulo:
---

1.1. Objetivos de la asignatura

La asignatura y sus resultados previstos responden a los siguientes planteamientos y objetivos:

El objetivo general de la asignatura es formar titulados preparados específicamente para llevar a cabo el análisis de máquinas, mecanismos y sistemas mecánicos, lo que implica que deben ser capaces de entender un amplio espectro de fenómenos físicos, desarrollar habilidades creativas en diseño tecnológico así como habilidades analíticas y de resolución de problemas con el fin de poder aplicar los conocimientos adquiridos.

La combinación de las competencias adquiridas implica que los Graduados en Ingeniería Mecatrónica sean individuos con una formación muy versátil, estando preparados para acceder a un amplio abanico de oportunidades profesionales.

Otro objetivo fundamental es que estos graduados adquieran una serie de competencias transversales técnicas, sistémicas, participativas y personales que serán enumeradas en el siguiente apartado.

prueba de ultima version

1.2. Contexto y sentido de la asignatura en la titulación

La asignatura de "Ingeniería Mecánica" tiene carácter obligatorio y pertenece al modulo de Mecánica dentro del Grado de "Ingeniería Mecatrónica". Tiene en el actual Plan de Estudios una carga lectiva de 6 créditos ECTS y se imparte en el primer cuatrimestre de segundo curso.

Breve presentación de la asignatura

La Ingeniería Mecánica es un campo muy amplio de la ingeniería que implica el uso de los principios de la física para el análisis, diseño y fabricación de sistemas mecánicos. Tradicionalmente, ha sido la rama de la ingeniería que mediante la aplicación de los principios físicos ha permitido la creación de dispositivos útiles, como utensilios y máquinas.

La Ingeniería Mecánica es la rama de las máquinas, equipos e instalaciones teniendo siempre en mente aspectos ecológicos y económicos para el beneficio de la sociedad. Para cumplir con su labor, la ingeniería mecánica analiza las necesidades, formula y soluciona problemas técnicos mediante un trabajo interdisciplinario, y se apoya en los desarrollos científicos, traduciéndolos en elementos, máquinas, equipos e instalaciones que presten un servicio adecuado, mediante el uso racional y eficiente de los recursos disponibles.

1.3. Recomendaciones para cursar la asignatura

Esta asignatura requiere haber cursado la asignatura de primer curso de la titulación denominada Fundamentos de Física I  ya que en esta asignatura se dedica un capítulo entero a obtener los conocimientos básicos de la mecánica del solido rígido.

2.1. Competencias

Al superar la asignatura, el estudiante será más competente para...

GC03: Capacidad para la abstracción y el razonamiento lógico.

GC04: Capacidad para aprender de forma continuada, autodirigida y autónoma.

GC05: Capacidad para evaluar alternativas.

GC06: Capacidad para adaptarse a la rápida evolución de las tecnologías.

GC07: Capacidad para liderar un equipo así como de ser un miembro comprometido del mismo.

GC08: Capacidad para localizar información técnica, así como su comprensión y valoración.

GC09: Actitud positiva frente a las innovaciones tecnológicas.

GC10: Capacidad para redactar documentación técnica y para presentarla con ayuda de herramientas informáticas adecuadas.

GC11: Capacidad para comunicar sus razonamientos y diseños de modo claro a públicos especializados y no especializados.

GC14: Capacidad para comprender el funcionamiento y desarrollar el mantenimiento de equipos e instalaciones mecánicas, eléctricas y electrónicas.

GC15: Capacidad para analizar y aplicar modelos simplificados a los equipos y aplicaciones tecnológicas que permitan hacer previsiones sobre su comportamiento.

GC16: Capacidad para configurar, simular, construir y comprobar prototipos de sistemas electrónicos y mecánicos.

GC17: Capacidad para la interpretación correcta de planos y documentación técnica.

EM01: Conocimiento y capacidades para el cálculo, diseño y ensayo de maquinas.

EM02: Conocimiento y capacidad para el modelado y simulación de sistemas mecánicos.

EM05: Conocimientos y capacidades para el diseño y mantenimiento de  sistemas mecatrónicos.

GI03: Conocimientos en materias básicas y tecnológicas, que les capacite para el aprendizaje de nuevos métodos y teorías, y les dote de versatilidad para adaptarse a nuevas situaciones.

GI04: Capacidad de resolver problemas con iniciativa, toma de decisiones, creatividad, razonamiento crítico y de comunicar y transmitir conocimientos, habilidades y destrezas en el campo de la Ingeniería Industrial y en particular en el ámbito de la electrónica industrial.

GI06: Capacidad para el manejo de especificaciones, reglamentos y normas de obligado cumplimiento.

EI07: Conocimiento de los principios de teoría de máquinas y mecanismos

2.2. Resultados de aprendizaje

El estudiante, para superar esta asignatura, deberá demostrar los siguientes resultados...

Obtener conocimientos de la composición de movimientos.

Saber definir e identificar los parámetros del movimiento de un sistema mecánico y sus grados de libertad.

Saber la aplicación de las fuerzas que se generan en la interacción entre sólidos en sistemas mecánicos.

Saber la aplicación a sistemas mecánicos de los conceptos de centro de masas.

Saber la aplicación de los teoremas vectoriales a sistemas mecánicos e interpretación de los resultados obtenidos.

Obtener conocimientos y aplicación de programas informáticos de modelado de sistemas mecánicos.

2.3. Importancia de los resultados de aprendizaje

Esta asignatura tiene un marcado carácter ingenieril, es decir, ofrece una formación con contenidos de aplicación y desarrollo inmediato en el mercado laboral y profesional. A través de la consecución de los pertinentes resultados de aprendizaje se obtiene la capacidad necesaria para el entendimiento del funcionamiento de máquinas y mecanismos, los cuales serán absolutamente imprescindibles para el diseño y puesta en marcha de cualquier aplicación mecánica, dentro del ámbito de la Ingeniería Mecatrónica.

3.1. Tipo de pruebas y su valor sobre la nota final y criterios de evaluación para cada prueba

La evaluación debe entenderse como un proceso continuo e individualizado a lo largo de todo el período de enseñanza-aprendizaje, valorando prioritariamente las capacidades y habilidades de cada alumno, así como los rendimientos de los mismos.

Al comienzo de la asignatura el alumno/a elegirá una de las dos siguientes metodologías de evaluación:

          A) Un Sistema de Evaluación continua, que se realizara a lo largo de todo el periodo de aprendizaje. Caracterizada por la obligatoriedad de realizar y superar las pruebas prácticas, exámenes parciales y trabajos académicos propuestos en la asignatura, dentro de los plazos establecidos para este fin. En este caso, el alumno no tiene que hacer examen final.

           B) Una prueba global de evaluación, que refleje la consecución de los resultados de aprendizaje, al término del periodo de enseñanza. Caracterizada por no realizar o no superar las pruebas prácticas, exámenes parciales o trabajos académicos propuestos en la asignatura. En este caso, el alumno tiene que hacer examen final obligatoriamente.

Desglose y contenido de cada sistema de evaluación:

El sistema de evaluación continua consta de tres bloques que se explican a continuación. La primera premisa es que el alumno deberá asistir al menos a un 80% de las actividades presenciales.

1º Bloque: Ejercicios de evaluación continua: El alumno/a realizará un total de 5 ejercicios de evaluación continua (uno por tema) con carácter obligatorio en el sistema de evaluación continua, que serán distribuidos a lo largo del curso. Cada ejercicio se entregará al alumno una vez finalizado los temas de teoría y ejercicios correspondientes. El alumno dispondrá de una semana para realizarlo y entregarlo al profesor, ya que esta actividad es continua y no se debe demorar en el tiempo. El ejercicio de evaluación continua será muy parecido a los ejercicios realizados en clase, además el alumno dispondrá de tutorías para aclarar cualquier duda sobre el mismo. Dicha actividad contribuirá globalmente con un 30 % a la nota final de la asignatura, para tener en cuenta esta nota el alumno/a deberá cumplir dos premisas:

      1ª Deberá entregar todos los ejercicios en el plazo de tiempo indicado por el profesor. De no ser así se dará por suspendida dicha actividad (excepto causa/fuerza mayor debidamente justificada).

      2ª Deberá obtener como mínimo un 3.0 en cada ejercicio. Y deberá obtener entre todos los ejercicios una nota mínima de 4.0. De no ser así se dará por suspendida dicha actividad.

2º Bloque: Pruebas escritas de evaluación continua.  El alumno/a realizará un total de cuatro pruebas escritas de carácter obligatorio en el sistema de evaluación continua, que serán distribuidos a lo largo del curso. Dichas pruebas recogerán cuestiones teóricas yejercicios de los temas correspondientes.La duración de la prueba será como mínimo de dos horas de clases y máxima de tres, según el caso. Dicha actividad contribuirá globalmente con un 50 % a la nota final de la asignatura, para tener en cuenta esta nota el alumno/a deberá cumplir dos premisas:

     1ª Deberá presentarse a todas las pruebas en la fecha convocada por el profesor. De no ser así se dará por suspendida dicha actividad (excepto causa/fuerza mayor debidamente justificada).

     2ª  Deberá obtener como mínimo un 3.0 en cada prueba. Y deberá obtener entre todas las pruebas una nota mínima de 4.0.  De no ser así se dará por suspendida dicha actividad.

 

3º Bloque: Practicas asistidas por ordenador El alumno/a realizará dos sesiones de prácticas con carácter obligatorio en el sistema de evaluación continua, que serán distribuidos a lo largo del curso, según tabla de planificación.Dicha actividad contribuirá globalmente con un 20 % a la nota final de la asignatura, para tener en cuenta esta nota el alumno/a deberá cumplir dos premisas:

     1ª Deberá asistir a todas las sesiones de prácticas en la fecha convocada por el profesor. De no ser así se dará por suspendida dicha actividad (excepto causa/fuerza mayor debidamente justificada).

       2ª Deberá obtener como mínimo un 3.0 en cada práctica. Y deberá obtener entre todas las prácticas una nota mínima de 4.0.  De no ser así se dará por suspendida dicha actividad.

Previamente a la primera convocatoria el profesor notificará a cada alumno/a si ha superado o no la asignatura en función del aprovechamiento del sistema de evaluación continua, en base a la suma de las puntuaciones obtenidas en las distintas actividades desarrolladas a lo largo de la misma según la formulación:

Nota final de la asignatura en primera convocatoria = 50%A+30%B+20%C

A= Nota media de pruebas escritas

B= Nota media de ejercicios

C= Nota media de practicas

Debiendo obtener de esta manera una nota mínima de 5.0 para superar la asignatura cumpliendo todos los requisitos previos ya citados y explicados. El alumno/a que haya superado la asignatura mediante esta dinámica, podrá optar en primera convocatoria a subir nota (nunca para bajar).

Prueba Global:

En caso de no aprobar con el sistema anterior, el alumno dispondrá de dos convocatorias adicionales (Junio y Septiembre) mediante una prueba global de evaluación. Dicha prueba será única con teoría y ejercicios representativos de todo el temario de la asignatura contribuyendo con un 100 % a la nota final de la asignatura.

 

4.1. Presentación metodológica general

El proceso de aprendizaje que se ha diseñado para esta asignatura se basa en lo siguiente:

En una fuerte interacción profesor/alumno. Esta interacción se materializa por medio de un reparto de trabajo y responsabilidades entre alumnado y profesorado. No obstante, se tendrá que tener en cuenta que en cierta medida el alumnado podrá marca su ritmo de aprendizaje en función de sus necesidades y disponibilidad, siguiendo las directrices marcadas por el profesor.

La organización de la docencia se realizará siguiendo las pautas siguientes:

  1. Clases teóricas: Actividades teóricas impartidas de forma fundamentalmente expositiva por parte del profesor, de tal manera que se exponga los soportes teóricos de la asignatura, resaltando lo fundamental, estructurándolos en temas y/o apartados y relacionándolos entre sí.
  2. Clases prácticas: El  profesor resuelve problemas o casos prácticos con fines ilustrativos. Este tipo de docencia complementa la teoría expuesta en las clases magistrales con aspectos prácticos.
  3. Prácticas de laboratorio:Se realizarán actividades prácticas en la sala de informática M0.2 con el software de simulación de mecanismos  (GIM 16.0) con la presencia y tutorización del profesor.
  4. Tutorías individuales: Son las realizadas a través de la atención personalizada, de forma individual, del profesor en el departamento. Tienen como objetivo ayudar a resolver las dudas que encuentran los alumnos, especialmente de aquellos que por diversos motivos no pueden asistir a las tutorías grupales o necesitan una atención puntual más personalizada. Dichas tutorías podrán ser presenciales o virtuales

4.2. Actividades de aprendizaje

El programa que se ofrece al estudiante para ayudarle a lograr los resultados previstos comprende las siguientes actividades...

La asignatura consta de 6 créditos ECTS, lo cual representa 150 horas de trabajo del alumno en la asignatura durante el semestre. El 40% de este trabajo (60 h.) se realizará en el aula, y el resto será autónomo. Un semestre constara de 15 semanas lectivas.

Para realizar la distribución temporal se utiliza como medida la semana lectiva, en la cual el alumno debe dedicar al estudio de la asignatura un total de 10 horas.

Un resumen de la distribución temporal orientativa de una semana lectiva puede verse en la tabla siguiente.

Actividades formativas por semana

   6 ECTS

                   Metodología

enseñanza-aprendizaje

Clases Teóricas Expositivas.

(3h/semana) 

  1.8 ECTS

 

Clases teóricas presenciales, que fomentan la participación de los alumnos/as y relacionan los conceptos impartidos para su aplicación en la empresa.

Estas clases estarán apoyadas a posteriori con tutorías individuales tanto presenciales como virtuales gracias a Moodle.

La asimilación de los contenidos expuestos será evaluada mediante pruebas escritas, ejercicios y cuestionarios de evaluación continua a lo largo del curso. O en su caso con un examen final dependiendo de la situación del alumno al finalizar el semestre.

 

Clases Prácticas  de ejercicios.

(1h/ semana)

0.6 ECTS

 

Aplicación de técnicas de aprendizaje cooperativo mediante clases prácticas presenciales en grupos reducidos, para la resolución de problemas y ejercicios referentes a los conceptos teóricos estudiados en las clases teóricas presenciales.

 

Actividades tutorizadas

(2h/ semana) 

1.2 ECTS

 

Actividades programadas para el seguimiento del aprendizaje, en las que el alumno/a tendrá la posibilidad de realizarlas en el centro, bajo la supervisión de un profesor/a del departamento que se reunirá con un grupo de estudiantes para orientar y tutelar sus trabajos, labores de aprendizaje autónomo y de estudio.

 

 

Preparación de ejercicios de evaluación continúa.

(2h/ semana)

 

 

 

1.2 ECTS

 

Dedicación semanal del alumno/a a la realización y entrega de ejercicios de evaluación continua.

 

 

Estudio y preparación de prueba escrita.

(2h/ semana)

1.2 ECTS

 

Dedicación semanal del alumno/a a al estudio de la asignatura para superar las pruebas escritas.

 

4.3. Programa

Tema 1: Análisis Estructural de Mecanismos Planos

Introducción: Evolución histórica de la teoría de los mecanismos y las máquinas

  • Terminología de los mecanismos           
  • Clasificaciones  de elementos y pares cinemáticos de un mecanismo
  • Movilidad y Grados de libertad: Criterio de Grübler      
  • Ley de Grashoff : Teorema y Análisis gráfico
  • Obtención del esquema cinemático de un mecanismo

Tema 2: Análisis Cinemático de Mecanismos Planos

  • Planteamiento del problema Cinemático
  • Movimiento Plano Relativo
  • Centro Instantáneo Relativo
  • Determinación de los centros instantáneos de un mecanismo
  • Teorema de Aronhold-kennedy
  • Calculo de velocidades de un mecanismo analíticamente
  • Calculo de velocidades de un mecanismo gráficamente

Tema 3: Análisis Dinámico de Mecanismos Planos

  • Planteamiento del problema Dinámico
  • Calculo de aceleraciones de un mecanismo analíticamente
  • Calculo de aceleraciones de un mecanismo gráficamente
  • Fuerzas de inercia en mecanismos
  • Equilibrio en mecanismos

Tema 4: Análisis Cinemático de Engrane y Trenes de Engranajes

  • Engranajes: Ley Fundamental del Engranaje
  • Clasificación de Engranajes
  • Trenes de Engranajes
  • Clasificación de Trenes de Engranajes
  • Aplicaciones: Diferencial de un vehículo

Tema 5: Teoría de Vibraciones Mecánicas

  • Conceptos fundamentales en vibraciones
  • Sistemas de un grado de libertad
  • Vibraciones libres en sistemas de un grado de libertad
  • Vibraciones forzadas en sistemas de un grado de libertad
  • Fenómeno de Resonancia

 

4.4. Planificación de las actividades de aprendizaje y calendario de fechas clave

Planificación de las actividades de aprendizaje:

 

 

Semanas

 

 

PLANIFICACIÓN SEMANAL DE CUATRIMESTRE

 

 

 

Tema 1

 

 

 

Ejercicio Nº1 de Evaluación Continua

 

 

 

 

 

 

Tema 2

 

Ejercicio Nº2 de Evaluación Continua

            

1ª Práctica con software GIM (Temas 1 y 2)

 

1ª Prueba Escrita (Temas 1 y 2)

 

 

 

 

 

 

 

Tema 3

 

Ejercicio Nº3 de  Evaluación Continua

 

2ª Práctica con software GIM ( Tema 3)

 

2ª Prueba Escrita (Tema 3)

 

 

 

 

10ª

11ª

12ª

 

 

 

 

 

Tema 4

                  

      Ejercicio Nº4 de  Evaluación Continua

 

3ª Prueba Escrita (Tema 4)

 

 

13ª

14ª

15ª

 

 

Tema 5

 

               Ejercicio Nº5 de  Evaluación Continua

 

4ª Prueba Escrita (Tema 5)

 

Calendario de fechas clave

El horario semanal de la asignatura se encontrará publicado de forma oficial en http://www.eupla.unizar.es/asuntos-academicos/calendario-y-horarios

Las fechas de la prueba global de evaluación (convocatorias oficiales) serán las publicadas de forma oficial en http://www.eupla.unizar.es/asuntos-academicos/examenes

4.5. Bibliografía y recursos recomendados

RECURSOS RECOMENDADOS:

Material

Soporte

Apuntes de teoría

Apuntes de problemas

Papel / Reprografía

Apuntes de teoría

Apuntes de problemas

Presentaciones

Links de interés

Digital/Moodle

E-Mail

Software educacional: GIM 16

Web page: http://www.ehu.eus/compmech/software/