Teaching Guides Query



Academic Year: 2018/19

424 - Bachelor's Degree in Mechatronic Engineering

28805 - Mathematics II


Teaching Plan Information

Academic Year:
2018/19
Subject:
28805 - Mathematics II
Faculty / School:
175 - Escuela Universitaria Politécnica de La Almunia
Degree:
424 - Bachelor's Degree in Mechatronic Engineering
ECTS:
6.0
Year:
1
Semester:
Second semester
Subject Type:
Basic Education
Module:
---

4.1. Methodological overview

The learning process designed for this subject is based on the following:

Strong interaction between the teacher/student. This interaction is brought into being through a division of work and responsibilities between the students and the teacher. Nevertheless, it must be taken into account that, to a certain degree, students can set their learning pace based on their own needs and availability, following the guidelines set by the teacher.

Matemáticas II is conceived as a stand-alone combination of contents, yet organized into two fundamental and complementary forms, which are: the theoretical concepts of each teaching unit and the solving of problems or resolution of questions, at the same time supported by other activities.

4.2. Learning tasks

The programme offered to the student to help them achieve their target results is made up of the following activities...

Involves the active participation of the student, in a way that the results achieved in the learning process are developed, not taking away from those already set out, the activities are the following:

  • Face-to-face generic activities:
    • Theory Classes: The theoretical concepts of the subject are explained and illustrative examples are developed as support to the theory when necessary.
    • Practical Classes: Problems and practical cases are carried out, complementary to the theoretical concepts studied.
    • Individual Tutorials: Those carried out giving individual, personalized attention with a teacher from the department. Said tutorials may be in person or online.
  • Generic non-class activities:
    • Study and understanding of the theory taught in the lectures.
    • Understanding and assimilation of the problems and practical cases solved in the practical classes.
    • Preparation of seminars, solutions to proposed problems, etc.
    • Preparation of summaries and reports.
    • Preparation of the written tests for continuous assessment and final exams.

The subject has 6 ECTS credits, which represents 150 hours of student work in the subject during the semester, in other words, 10 hours (Lectures: 4 h.; Other Activities: 6 h.) per week for 15 weeks of class.

The overall distribution is:

  • 52 hours of lectures, with 50% theoretical demonstration and 50% solving type problems.
  • 8 hours of written assessment tests.
  • 90 hours of personal study, divided up over the 15 weeks of the semester.

There is a tutorial calendar timetable set by the teacher that can be requested by the students who want a tutorial.

4.3. Syllabus

 1.- Introduction to Octave.     
 2.- Systems of Linear Equations.
 3.- Determinants.
 4.- Numerical linear algebra.
 5.- Vector Spaces.
 6.- Orthogonality and Least Squares
 7.- The Geometry of Vector Spaces.
 8.- Diagonalization.
 9.- Singular value decomposition.
10.- Multiple integrals: double integrals.
11.- Multiple integrals: change of variables; triple integrals.
12.- Plane and space curves: curvature and torsion.
13.- Line Integrals: the fundamental theorem for line integrals; Green's theorem.
14.- Surfaces: normal vector.
15.- Surface Integrals: Stokes' theorem, Gauss' theorem.

4.4. Course planning and calendar

A detailed  schedule will be published in the Moodle page of the subjet.

The dates of the final exams will be those that are officially published on the School website.

 


Curso Académico: 2018/19

424 - Graduado en Ingeniería Mecatrónica

28805 - Matemáticas II


Información del Plan Docente

Año académico:
2018/19
Asignatura:
28805 - Matemáticas II
Centro académico:
175 - Escuela Universitaria Politécnica de La Almunia
Titulación:
424 - Graduado en Ingeniería Mecatrónica
Créditos:
6.0
Curso:
1
Periodo de impartición:
Segundo semestre
Clase de asignatura:
Formación básica
Módulo:
Matemáticas

1.1. Objetivos de la asignatura

Los métodos matemáticos básicos forman parte de las numerosas herramientas con las que todos los profesionales de la Ingeniería deben contar para resolver los problemas que aparecen en su trabajo. Entre los resultados de aprendizaje figuran precisamente el dominio de técnicas no sólo teóricas, sino también prácticas, que permiten la aplicación directa de los métodos considerados en la asignatura a problemas reales, con métodos de cálculo realistas que se incorporan en paquetes de software eficaces y contrastados. Es por tanto fundamental en la correcta formación de un ingeniero obtener los resultados de aprendizaje que abarca esta asignatura.

1.2. Contexto y sentido de la asignatura en la titulación

La asignatura es obligatoria y forma parte de la formación básica de los estudiantes. Se imparte en el segundo semestre del primer curso del plan de estudios del Grado de Ingeniería Mecatrónica, lo que supone que el estudiante va a adquirir unos resultados de aprendizaje que le proporciona destrezas en herramientas que serán de utilidad en distintas asignaturas de cursos posteriores. Como ya se ha indicado, el énfasis se pone en los conceptos que tienen aplicación directa en Física, Mecánica, Electrónica, Estadística, Economía, etc. En muchas ocasiones el enfoque unificador de las Matemáticas simplifica los problemas que se tratan en otras materias, y hace evidentes las semejanzas en problemas aparentemente distintos que pueden ayudar en la solución.

1.3. Recomendaciones para cursar la asignatura

Se trata de una asignatura de carácter básico que representa la continuación  natural de las  Matemáticas I cursadas a lo largo del primer semestre.

2.1. Competencias

 

Conocimientos en materias básicas y tecnológicas, que les capacite para el aprendizaje de

nuevos métodos y teorías, y les dote de versatilidad para adaptarse a nuevas situaciones.

Al superar la asignatura, el estudiante será más competente para...

  • (GI03) Utilizar las  materias básicas y tecnológicas que capacitan para el aprendizaje de nuevos métodos y dotan de versatilidad para adaptarse a nuevas situaciones.
  • (GI04) resolver problemas con iniciativa, toma de decisiones, creatividad ,razonamiento crítico y de comunicar y transmitir conocimientos, habilidades y destrezas en el campo de la Ingeniería Mecatrónica;
  • (GC02) interpretar datos experimentales, contrastarlos con los teóricos y extraer conclusiones;
  • (GC03) la abstracción y el razonamiento lógico;
  • (GC04) aprender de forma continuada, autodirigida y autónoma;
  • (GC05) evaluar alternativas;
  • (GC07) liderar un equipo así como de ser un miembro comprometido del mismo;
  • (GC08) localizar información técnica, así como su comprensión y valoración;
  • (GC10) redactar documentación técnica y para presentarla con ayuda de herramientas informáticas adecuadas;
  • (GC11) comunicar sus razonamientos y diseños de modo claro a públicos especializados y no especializados;
  • (EB01) la resolución de los problemas matemáticos que puedan plantearse en la ingeniería. Aptitud para aplicar los conocimientos sobre: álgebra lineal; geometría; geometría diferencial; cálculo diferencial e integral; ecuaciones diferenciales y en derivadas parciales; métodos numéricos; algorítmica numérica; estadística y optimización.

2.2. Resultados de aprendizaje

El estudiante, para superar esta asignatura, deberá demostrar los siguientes resultados...

  1. Sabe aplicar los resultados fundamentales del Álgebra Lineal y el Cálculo Infinitesimal e Integral en Varias Variables. Es además capaz de describir los conceptos básicos como el de matriz, solución de un sistema lineal, ortogonalidad y subespacio vectorial, curvas y superficies en el espacio y las derivadas, problemas de extremos e integrales asociadas a ellas.
  2. Desarrolla y experimenta estrategias de resolución de problemas y distingue el método más adecuado en cada situación.
  3. Es capaz de razonar la dificultad de resolver un problema de forma exacta y la necesidad de recurrir a la aplicación de métodos de aproximación numérica para su resolución, determinando el grado de precisión y el error cometido.
  4. Sabe utilizar algún software matemático en sus aplicaciones al Álgebra Lineal, Derivación, Optimización e Integrales de línea y superficie.
  5. Es capaz de plantear y resolver con rigor problemas de las áreas citadas aplicados a la Ingeniería Mecatrónica, seleccionando de forma crítica los métodos y resultados teóricos más adecuados, y ante la complejidad de la resolución de estos problemas reales de modo analítico es capaz de resolverlos con el software matemático propuesto en el apartado 4.
  6. Es capaz de resolver, trabajando en equipo, los problemas del apartado 5, ampliando la información y los métodos propuestos en el aula. Es además capaz de realizar presentaciones orales de los resultados obtenidos, usando el lenguaje matemático adecuado y los programas informáticos más convenientes.
  7. Es capaz de expresar tanto de forma oral como escrita y utilizando el lenguaje científico, los conceptos básicos de la asignatura así como el proceso de resolución de problemas.

2.3. Importancia de los resultados de aprendizaje

Los resultados de aprendizaje de la asignatura se plasman en la resolución de problemas matemáticos que pueden plantearse en la ingeniería mecatrónica, en el conocimiento del uso reflexivo de herramientas de cálculo simbólico y numérico, en la utilización de métodos numéricos en la resolución de algunos problemas matemáticos. Proporcionan a los estudiantes los conocimientos matemáticos y procedimentales que se encuentran en la base de otras asignaturas de carácter científico-tecnológico del Grado, como, por ejemplo, las asignaturas de Física, Mecánica, Estadística, Economía o Electrónica. La capacidad para aplicar técnicas matemáticas a la resolución de problemas concretos de los distintos campos relacionados con la ingeniería, resulta una competencia fundamental de un ingeniero, así como la utilización de recursos ya existentes y la interpretación de los resultados obtenidos.

3.1. Tipo de pruebas y su valor sobre la nota final y criterios de evaluación para cada prueba

El estudiante deberá demostrar que ha alcanzado los resultados de aprendizaje previstos mediante las siguientes actividades de evaluación:

Pruebas escritas: A lo largo del curso se realizarán dos pruebas escritas. Versarán sobre aspectos teóricos y/o prácticos de la asignatura. Están relacionadas con los resultados de aprendizaje 1, 2, 3, 4, 5 y 7. Su peso en la nota final sera de un 80%.

Controles participativos: Para evaluar la participación de los alumnos en clase se llevarán a cabo controles periódicos en clase. Como mínimo se realizarán 4 controles que consistirán en la realización de ejercicios de tipo práctico. Los resultados de aprendizaje con los que están relacionados son el 1, 2, 3, 4, 5, 6 y 7. Su peso total en la nota final será del 20%.

Prueba global: Los alumnos que no hayan superado la asignatura con el sistema de calificación continuada, deberán realizar en las convocatorias oficiales una prueba escrita de carácter obligatorio equivalente a las pruebas escritas descritas anteriormente, cuyo peso en la nota final será del 100%.

Criteios de evaluación: Los criterios de evaluación son los mismos para todas las actividades de evaluación. Se evaluará:

  • el entendimiento de los conceptos matemáticos usados para resolver los problemas;
  • el uso de estrategias y procedimientos eficientes en su resolución;
  • explicaciones claras y detalladas;
  • la ausencia de errores matemáticos en el desarrollo y las soluciones;
  • uso correcto de la terminología y notación;
  • exposición ordenada, clara y organizada.

Durante el curso se concretarán (en función del calendario real) y publicarán en la plataforma Moodle las fechas de las pruebas escritas, controles, etc. El calendario de las pruebas globales de evaluación se publica en la página web de la Escuela.

4.1. Presentación metodológica general

La metodología que se propone trata de fomentar el trabajo continuado del estudiante y se centra en los aspectos más prácticos del cálculo diferencial e integral. Con el fin de conseguir este objetivo se fomentará  el uso de herramientas de tipo informático. Las explicaciones teóricas de los conceptos de la asignatura serán reforzadas con ejemplos o casos prácticos analizados con el ordenador. Asimismo se realizarán tutorías (presenciales, vía correo electrónico y plataforma Moodle) con el fin de reforzar los conceptos desarrollados en las clases.

En todas las aplicaciones de la informática a la materia bajo estudio se usa sólo software de libre distribución, de manera que todos los alumnos puedan acceder a él tanto dentro como fuera del centro.

4.2. Actividades de aprendizaje

Clases teóricas, en las que se exponen los conceptos fundamentales que constituyen el cuerpo de conocimientos básicos que deben aprenderse para conseguir los resultados de aprendizaje. Los conceptos teóricos se complementan con ejemplos detallados que ilustran su funcionamiento dentro de un contexto concreto.

Clases prácticas, en las que se proponen problemas que deberán resolverse empleando los métodos y conceptos considerados con anterioridad. En estas clases se fomenta la discusión, la participación, la cooperación y la reflexión. El uso del paquete informático adecuado a cada situación es permanente (Maxima para cálculo simbólico, Octave para cálculo numérico), de manera que las clases de problemas son a su vez clases de prácticas con el ordenador. Así, el uso del ordenador se enfoca de forma natural como el método de cálculo más conveniente, y quedan integradas las técnicas informáticas con las técnicas abstractas.

Controles de participación, que son clases de problemas y sesiones de evaluación a la vez. Mientras los alumnos resuelven un problema propuesto, se puede evaluar su implicación y colaboración además del resultado que obtienen. Esto sirve como motivación para que trabajen el problema de forma colectiva y con el profesor, facilitando la asimilación de conceptos que se persigue.

Trabajo personal, en el que los alumnos dedican tiempo fuera de clase para estudiar los conceptos impartidos en clase, resolver problemas análogos y/o complementarios a los considerados en clase.

4.3. Programa

El programa que se ofrece al estudiante para ayudarle a lograr los resultados previstos comprende las siguientes contenidos

  1. Introducción a Octave.     
  2. Sistemas lineales: operaciones elementales; eliminación gaussiana y rango de una matriz; teorema de caracterización de los sistemas lineales (Rouché-Frobenius).
  3. Determinantes.
  4. Álgebra Lineal Numérica: eliminación gaussiana numérica, número de condición; descomposiciones LU, QR y Choleski; métodos iterativos.
  5. Espacios vectoriales: independencia lineal, dimensión y base; subespacios.
  6. Aproximación óptima: producto escalar; distancias, ángulos y ortogonalidad; sistemas y subespacios ortogonales; proyectores y teorema de aproximación óptima.
  7. Aplicación a la geometría tridimensional euclídea: espacio afín; distancias, producto escalar, producto vectorial, producto mixto; elementos euclídeos: Rectas, planos, esferas.
  8. Diagonalización: valores y vectores propios; descomposición espectral y funciones de matrices; matrices normales; cálculo numérico de autovalores.
  9. Valores singulares: descomposición en valores singulares.
  10. Integrales múltiples: integrales dobles.
  11. Integrales múltiples: cambio de variables; integrales triples.
  12. Curvas: curvas tridimensionales, vector tangente, triedro de Frenet; curvatura y torsión.
  13. Integral de línea: campos vectoriales; integral de línea; independencia del camino; trabajo y energía; teorema de Green.
  14. Superficies: definición de superficie, ejemplos; el plano tangente y el vector normal.
  15. Integral de superficie: integrales de superficie; teorema de Stokes, teorema de Gauss.

4.4. Planificación de las actividades de aprendizaje y calendario de fechas clave

La asignatura se articula con 4 horas de clase presencial a la semana durante las 15 semanas que dura el semestre. Cada uno de los 15 puntos  del programa (citados anteriormente) se corresponden aproximadamente con la materia desarrollada en una semana. Se impartirán conceptos teóricos que serán reforzados con la aplicación práctica en resolución de ejercicios y análisis de resultados mediante el uso permanente de herramientas de tipo informático.

Un calendario detallado de actividades está a disposición del alumno a través de la página Moodle de la asignatura: durante el curso se concretarán (en función del calendario real) y publicarán (en la plataforma Moodle) con suficiente antelación  las fechas de las actividades de la asignatura.